n u xe 0 Content Management Platform
For Business Applications

Nuxeo Platform 5.7.1
Fast Track

Technical
Documentation

Released on 06/25/13

1. Technical Documentation Center ettt e e e e e e 3

1.1 Overview and ArChiteCtUre o 4
12 OV VIBW . . oottt 5
1 2.1 LICBNS S . . e 9
1.8 ArCNI ECIUNE . . 20
1.3.1 ArChiteCtUre OVeIVIEW . .. 20
1.3.2 About the CONteNt repOSIIOrYo e 24
1.83.2.1 VOCS ArChiteCtUre oo e e e 37
1.3.2.1.1 Mapping Nuxeo to nodes and Propertiesttt e e s 37
1.3.2.1. 2 Tables .o 38
1.3.2.1.3 Examples of SQL generated by VCS 51
1.3.2.1.4 Java data structures and CaChingttt e 54
1.3.2.1.5 Performance recommendationsttt 55
1.3.3 Platform features qUICK OVeIVIEWo e 55
1.3.4 Component MOdEl OVEIVIEWttt et e e e e e e e e e e e e e e e e 58
1.3.5 AP and CONNECIOrS e e e e e 63
1.3.6 UL rameWOrKS . .. oottt e 68
1.3.7 Nuxeo Deployment MOdel 71
1.3.8 Deployment OptONSo e e 76
1.3.9 Performance management for the Nuxeo Platform 82
1.4 Customization and DevelopmENt e e 91
1.4.1 Learning to customize NUXEO0 EP e 92
1.4, 2 DOCUMENE B PO . . oottt ettt e e e e e e e e e 93
1.4.3 Document, form and listing VIEWSo e 102
1.4.3.1 Layouts (fOrms and VIEWS)ottt e e e e e e e 103
1.4.3.1.1 Manage layoutso e 104
1.4.3.1.2 Field binding and eXpresSSiONSottt e 114
1.4.3.1.3 Document lay0ULS o e 115
1.4.3.1.4 Layout displayo e 116
1.4.3.1.5 Standard Widget types oot 117
1.4.3.1.6 Custom layout and widget templates i e 120
1.4.3.1.7 CUStOmM Widget tyPESot 134
1.4.3.1.8 GENENIC IayOUL USAGE ot ittt ettt e e e e e e e e e e e 142
1.4.3.1.9 Layout hOW-10So e 142
1.4.3.1.10 Widgets known limitations e 144
1.4.3.2 CON BNt VIBWS . oottt et e 145
1.4.3.2.1 Custom Page Providers e 153
1.4.3.2.2 Page Providers without Content Views e 154
1.4.3.3 VIeWS ON AOCUMENESo e e e e e 156
14,4 NV ErSIONING . ottt e e e e 157
1.4.5 Thumbnail . .. 159
1.4.6 User Actions (links, buttons, iCONs, tabs) e 165
1.4.7 BEvents and Listeners 171
1.4.7.1 Scheduling periodiC BVENES ot 178
14 8 TaggING . . ittt e e e e e 180
1.4.9 Directories and Vocabularies 181
1.4.10 Adding custom LDAP fields to the Ul o e e 188
1.4.11 AUthentiCation 190
1.4.12 User Managemento e e e e 200
1.4.18 PUDIISher SEIVICE 213
1.4.14 Querying and SEarChingttt e 217
14140 NXQL o 217
1.4.14.2 FUIEXt QUEIIESo e e e e e e e e e e 225
1.4.14.3 Advanced SEarCh 226
14144 Faceted SearCh 232
1.4.14.5 SMart SEAICNo 242
1.4.14.6 Search results optimizations 247
1.4.15 Security PoliCy SeIVICEo e 249
1.4.16 Drag and Drop Service for Content Capture (HTML5-based)t e e e 252
1A A7 WOTKI OW . oo 256
1.4.17.1 How are workflows persisted in Nuxeo? How to query workflow objects? oot 256
1.4.17.2 How to complete a workflow task programmatically i e 258
1.4.17.3 How to modify a workflow variable outside of workflow context i 259
1418 TREME .. 260
1.4.18.1 Migrating my customized theme e 267
1.4.18.2 Style NOWEOS . .o o 272
1.4.19 Navigation URLSo e e e e e e 275
14190 URLS fOr files ... oo e e 278
1.4.20 Digital Asset Management (DAM) e 279
1.4.20.1 C0re FeatUresottt e 281
1.4.20.1.1 NUXEO DAM COrEottt ettt e e e e e e e e e e e e e e 282

1.4.20.1. 2 IMPOIt .. 283

1.4.20.1.3 BUulK Edit e 286

1.4.20.1.4 VidBO . ..ottt 287
1.4.20.1.5 AUAIO . ..ottt 289
1.4.20.2 Customizing NUXE0 DAM . . . Lo e 289
1.4.20.2.1 Metadata CuStomMIzZationo 289

1.4.21 Nuxeo Ul FramewWorKs e e e 301
1.4.21.1 Seam and JSF WEDAPP OVEIVIEWo ottt ettt e e e e e e e e et e e e 302
1.4.21.1.1 JSF & Ajax tips @and hoWtOS oot 303
1.4.21.2 GWT INtegration oottt e e e e e e e e e 309
1.4.21.3 Extending The Shell 319
1.4.21.3.1 Shell FEatUreso e e e e e 319
1.4.21.3.2 Shell COmMmMAaNASottt et e 324
1.4.21.3.3 Shell NameSpacesottt e e e e e e e e 332
1.4.21.3.4 Shell DOCUMENTAtioNttt e e e e e 333
1.4.21.4 WebENGINe (JAX-RS) . ..t t 335
1.4.21.4.1 Session And Transaction Managementttt e 353
1.4.21.4.2 WebENgine TUtONals e e 356
1.4.21.5 Nuxeo Android CONNECIONttt ettt et e et e e e e e e e et 393
1.4.21.5.1 Nuxeo Automation Client 394
1.4.21.5.2 Android Connector and Cachingttt e 395
1.4.21.5.3 Android Connector additional ServiCesttt e 397
1.4.21.5.4 DocumentProviders in Android CONNECIOrttt e 398
1.4.21.5.5 Android SDK Integration e 402
1.4.21.5.6 Nuxeo Layout in Androido 404
1.4.21.5.7 SDK provided base Classesttt e e e 405
1.4.21.6 NUXEO FIEX CONNECIOT o\ttt ettt e e e e e et e e e e e e e e e et 406
1.4.21.6.1 AMF Mapping in NUXEO0ot e e e e e e e e e e 407
1.4.21.6.2 Build and deploy Nuxeo Flex CONNECtt e e 410
1.4.21.6.3 Using FIex CONNECIOrot e e e e e e e e e 413

1.4.22 EXtendiNg NUXEOottt e e e e e e e 418
1.4.22.1 Integrating With JP A . . .o e 418
1.4.23 Using Nuxeo as a service platform e 421
1.4.23.1 ECM Services in NUXE0 EP e 424
1.4.28.2 SIMpPle REST ... o 425
1.4.28.8 WD S EIVICES . . . ottt et ettt 426
1.4.23.3.1 Building a SOAP-based WebService client in NUXEO e 428
1.4.23.3.2 Building a SOAP based WebService in NUXE0O oot e 430
1.4.23.3.3 Trust Store and Key Store Configuration i e 434
1.4.23.4 Content AUTOMALIONottt et e e e 438
1.4.23.4.1 Operations INdeXottt e e 442
1.4.23.4.2 Contributing an Operationt e 518
1.4.23.4.3 Contributing an Operation Chain e e e 524
1.4.28.4.4 REST APl . oo 525
1.4.23.4.5 REST Operation FIlters e e e e e 538
1.4.23.4.6 Using the REST APl - EXampleso e e e 539
1.4.23.4.7 Returning a custom result with Automation 568
1.4.23.5 OpenSocial, OAuth and NUXE0 EP o e 570
1.4.23.5.1 OpenSocial configuration 579
1.4.23.6 REPOSIHOIY GCCESS . . .\ttt ittt et e e e e e e e e e 579
1.4.23.6.1 CMIS fOr NUXEOo e e e e e e e 580
1.4.28.6.2 WEb DAY . 585
1.4.23.6.3 WSS before NUXE0 5.4.2 586

14,24 Packaging . . .ottt et e e e 590
1.4.24.1 Packaging from SOUICESottt e e e e e e e e e e e e e 590
1.4.24.2 Packaging a NUXEO PIUGIN oottt e e e e e e 591

1.5 Dev Co0KbOOK . .. o 596
1.5.1 How to create an empty bundle 609
1.5.2 How to implement an ACtioN 619
1.5.3 How to contribute a simple configuration in NUXE0 e 626
1.5.4 How to configure document types, actions and operation chains i 630
1.5.5 HOw t0 setup @ test SMT P SEIVEr e e e e e e e e e 654
1.6 Contributing t0 NUXEOo oo e e e e e e e 655
1.6.1 1S 50Urce Code NEEAEBA? ittt e e 658
1.6.2 How to translate NUXe0 DM e 658
1.6.3 Creating Packages for the Marketplace e e e 660
1.6.3.1 Package Manifest 663
1.6.3.2 Scripting Commandsttt e e e 665
1.6.3.83 Package Web Pageo e 673
1.6.3.4 Package EXample e 673
1.6.3.5 Packaging eXampleso e 676

1.7 NUxeo DistributioNs 678

1.7.1 Available INStallers e e 678

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Technical Documentation Center

Technical documentation for Nuxeo Platform 5.7.1

© Nuxeo Platform versioning

This documentation is about the latest Fast Track version of the Nuxeo Platform, which provides
the latest features and improvements for testing and protyping. You can check the Nuxeo
Platform 5.6 documentation for the latest LTS version.

More about Nuxeo release cycle.

Welcome to the Technical documentation Center of Nuxeo applications

Overview and Architecture
Documentation presenting Nuxeo Enterprise Platform architecture.

Using Nuxeo as a service platform
Documentation about the services provided by Nuxeo Platform

Extending Nuxeo
Documentation about the extension capabilities offered by Nuxeo Enterprise Platform.

Developer Guide
Resources for developpers that want to use or extend Nuxeo.

Installation and Administration Guide
Documentation about installing and administrating a Nuxeo Server.

Nuxeo Ul Frameworks
Resources about Nuxeo Ul technologies

Nuxeo Distributions
Documentation about Nuxeo distributions and associated tools.

© License

This documentation is copyrighted by Nuxeo and published under the Creative Common BY-SA
license. More details on the Nuxeo documentation license page.

Download

Download this documentation in PDF.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/NXDOC56/Technical+Documentation+Center
http://doc.nuxeo.com/display/NXDOC56/Technical+Documentation+Center
http://doc.nuxeo.com/display/MAIN/Nuxeo+release+cycle
http://doc.nuxeo.com/display/ADMINDOC/Installation+and+Administration
http://doc.nuxeo.com/display/MAIN/Nuxeo+documentation+license
http://doc.nuxeo.com/download/attachments/8684602/Nuxeo_Platform_5.7-SNAPSHOT_technical_documentation.pdf?version=8&modificationDate=1366963598239

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Recently updated

¢ Using Nuxeo Automation Client
updated yesterday at 5:01 PM (view change)

® Technical Documentation Center
updated yesterday at 4:52 PM (view change)

¢ QOperations Index
updated yesterday at 12:42 PM (view change)

®* Performance management for the Nuxeo Platform
updated yesterday at 11:15 AM (view change)

* Content views
updated yesterday at 11:11 AM (view change)

* Workflow
updated Jun 21, 2013 (view change)

® Architecture overview
updated Jun 21, 2013 (view change)

® Using Nuxeo Automation Client
updated Jun 20, 2013 (view change)

® JSF number of views configuration
updated Jun 20, 2013 (view change)

® Thumbnail
updated Jun 20, 2013 (view change)

Overview and Architecture

This chapter presents an overview of Nuxeo Enterprise Platform. This overview also applies to the applications
based on Nuxeo EP, such as Nuxeo Document Management (DM), Nuxeo Digital Asset Management (DAM) or Nux

eo Case Management Framework (CMF).

You should read this if:

® you want to understand Nuxeo application's architecture,
® you want to extend Nuxeo EP or a Nuxeo EP-based application,
® you want to integrate Nuxeo EP or a Nuxeo EP-based application into your existing applications.

This chapter presents the topics below:

Nuxeo EP - a platform for ECM
A quick overview of Nuxeo EP concepts

Architecture overview
Main concepts on Nuxeo architecture

Platform features quick overview
Presentation of the main features available in Nuxeo EP

About the content repository

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 4

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=14255024&selectedPageVersions=22&selectedPageVersions=21
http://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=14255253&selectedPageVersions=3&selectedPageVersions=2
http://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=3343039&selectedPageVersions=54&selectedPageVersions=53
http://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=950285&selectedPageVersions=25&selectedPageVersions=24
http://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=12913723&selectedPageVersions=2&selectedPageVersions=1
http://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=3345941&selectedPageVersions=42&selectedPageVersions=41
http://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=2949304&selectedPageVersions=27&selectedPageVersions=26
http://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=3343086&selectedPageVersions=37&selectedPageVersions=36
http://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=950332&selectedPageVersions=45&selectedPageVersions=44
http://doc.nuxeo.com/pages/diffpagesbyversion.action?pageId=3343039&selectedPageVersions=60&selectedPageVersions=59
http://doc.nuxeo.com/display/USERDOC/Document+Management
http://doc.nuxeo.com/display/USERDOC/Digital+Asset+Management
http://doc.nuxeo.com/display/CMDOC55
http://doc.nuxeo.com/display/CMDOC55

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Quick overview of Nuxeo document repository and associated features

Ul frameworks
Overview of Ul frameworks integrated inside Nuxeo EP

Component model overview
Introduction to the Nuxeo Component and Service model

APl and connectors
Presents how you can integrate Nuxeo with external applications.

Deployment options
Presents the different configurations that are available for Nuxeo EP deployment.

Performance management for the Nuxeo Platform
Presents how we management performance tuning and testing for Nuxeo EP.

Overview

Nuxeo Enterprise Platform (Nuxeo EP) is a platform for building ECM applications. It provides the technical
infrastructure and the high level services needed to build customized ECM applications.

In order to be flexible and easily adaptable, Nuxeo EP is composed of small software parts that can be assembled
together to build an application. These software parts (called "Bundles" in Nuxeo) contain:

¢ Services: to provide the features needed to manage your information;
¢ Components: to implement, configure and extend the services;
* Presentation frameworks and Ul building blocks: to provide the user interface on top of the service stack.

You can get more details by reading the Component model overview page.

One of the key features of our platform is that most components are configurable and extensible. This gives you full
control to extend and configure the existing services in order to fulfill the specific needs of your projects.

Assembling building blocks from the platform

Inside the platform, we organize the software parts into several families, or layers:

¢ the Core layer defines all low level components and services that deal with Document storage;
(Document repository, Security service, Life Cycle management, ...)

® the Services layer includes components and services that provide additional services on top of the core
layer;
(User management, directory management, mime-types detection, ...)

¢ the Ul framework provides an integrated framework for the several presentation technologies Nuxeo EP
supports;
(JSF/Seam, JAX-RS/WebEngine, GWT, Flex’/AMF, ...)

* the Features layer contains high level ECM services that also provide some default Ul
(Workflow engine, Subscriptions, Picture management, ...).

This layer organization is visible inside the source repository and inside the dependency management tree.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 5

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

|

Nuxeo |

Nuxeoep | DM |
[| |

|

: | : Nuxeo | |

, Features ([1@@@% 1@) | DAM |

| ui { Flex Assemble ' |

frameworks Englne l::onfr"‘_:}ure | Nuxeo !

un..n e [coresp. |

|

- |

I core LLL[] | Nuxeo |

|

Nuxeo
distributions

Nuxeo Distribution is the assembly tool we use to extract and packages components from Nuxeo EP into a
runnable application. This tool, based on maven, takes care of the dependencies management and adds the needed
default configuration so that the assembled application can easily be run.

Nuxeo Distribution provides an automated and safe way to accomplish the following tasks:

select bundles from the platform according to your need,

select all the required (dependent) bundles,

associate default configuration (document types, workflows, life-cycles, ...),

generate WAR or EAR,

associate storage configuration (storage type, database type, ...),

if needed generate a ready-to run package including the application server (Tomcat, JBoss ...).

Nuxeo provides several default distributions:

Nuxeo CAP: Nuxeo CAP stands for Content Application Platform. Nuxeo CAP basically includes all the basic
features to manage Documents and navigate inside the content repository. This distribution is used as a
basis for most distributions: for example CAP contains the infrastructure used by Nuxeo DM, Nuxeo CMF and
Nuxeo DAM (see below).

Nuxeo Core Server: Nuxeo Core sever is a light distribution of Nuxeo EP. It mainly includes the Document
Repository, the Audit service, Security and User management services, CMIS connector. This means Core
Server is basically a CMIS repository.

Nuxeo DM: this distribution is the historical distribution of Nuxeo EP and all features for managing
Documents: navigation and search, workflows, preview and annotations, picture management, etc.
Use the Document Management to learn more about this distribution.

Nuxeo DAM: this distribution focuses on Digital Asset Management
You can consult the Digital Asset Management for more information.

Nuxeo Case Management Framework: this framework enables to build applications dedicated to the
manipulation and distribution of cases.
You can consult the Nuxeo CMF 5.5 User Guide for more information.

Nuxeo Correspondence Management: this distribution manages inbound and outbound correspondence

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 6

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/USERDOC/Document+Management
http://doc.nuxeo.com/display/USERDOC/Digital+Asset+Management
http://doc.nuxeo.com/display/CMDOC55/Nuxeo+CMF+5.5+User+Guide

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

You can get more information about Nuxeo-Distribution by reading the dedicated documentation.

Using Nuxeo Enterprise Platform

As a platform, Nuxeo EP can be used in several different ways:

® Use a pre-built application that you customize,
® Create your own distribution from Nuxeo EP,
® Integrate your application with Nuxeo EP.

Turn-Key pre-built ECM applications

We provide several pre-built ECM applications on top of Nuxeo EP: Nuxeo DM, Nuxeo DAM, Nuxeo
Correspondence...

These are distributions of the Nuxeo platform that include all needed services, Ul and configuration to provide a
ready-to-run web application to do Document Management, Digital Asset Management, Correspondence
Management...

These distributions are the best solution to quick-start testing our ECM platform.

Even if these distributions are ready to run and include a lot of default configuration, they can still be customized.

In a lot of cases, a project's implementation is built on top of one of the existing default distributions and just modifies
what is needed:

define custom Document types,
customize workflows,

customize security policies,

adapt Ul themes,

add or remove buttons,

remove unneeded features and services,
add additional services and features.

Users/Groups config]

l
[Custom Ul and theme] Project specific
l
l

Custom workflows | configuration
(+ custom plugin)

Custom types]

| Project plugin i

Nuxeo DM Standard Nuxeo Distribution

Create a custom Nuxeo distribution

A lot of default distributions, and in particular Nuxeo DM, come with a lot of features. We choose to do so in order to
make platform testing and evaluation easier. But in a lot of projects, part of the features included in DM are not
needed.

Of course, you can disable the unwanted features with some XML configuration. But in some cases, it is more

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 7

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/CORG/Compiling+Nuxeo+from+sources

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

efficient to build your own distribution.
Nuxeo Distribution is an open system and you can use it to build your own distribution. This allows you to precisely
select the bundles you need for your project:

® don'tinclude bundles that you don't need,
® add bundles that are not included in any default distribution,
® add project and environment specific configurations.

Building your own distribution has an other advantage: since you can assemble your ECM application server with
one command line, you can easily:

¢ integrate it into an Integration Chain,
® have several profiles (dev, pre-prod, prod).

| Users/Groups config |

[Custom Ul and theme] Project specific
configuration
(+ custom plugin)

[Custom workflows]

| Custom types]

| Project plugin i Custom Nuxeo EP

Distribution
| Nuxeo features bundles i
| Nuxeo Core bundles i

Integrate your application with Nuxeo EP

The third way of using Nuxeo EP is to integrate it with an existing application.
Depending on your requirements, you may choose different approaches.

Deploy your application inside Nuxeo Platform

The first solution is to deploy your existing Web Application inside the Nuxeo server.
Basically, this means that you simply have to package your Web Application in Nuxeo's way and your application will
have full access to the entire Nuxeo EP framework (components and services).

Use Nuxeo EP as a service platform

The second solution is to use Nuxeo EP as a service provider: your application uses Nuxeo's ECM services
remotely.
Depending on the technology you use in your application, you may use Nuxeo's services

® via Java remoting (RMI)
® or via webservices (JAX-RS or JAX-WS).

Embed Nuxeo services into your application

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 8

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

The last solution is to embed a part of Nuxeo EP inside your application and use Nuxeo's services as a Java Library.

For that you can use nuxeo-client that can deploy a minimal Nuxeo environment so that Nuxeo's services can be
run. Because Nuxeo EP is very modular, you can have a very small Nuxeo stack and embed Nuxeo's services even
in a very small java application.

Embed your application Nuxeo

inside Nuxeo server ([Yourapp |
l| nuxeo-services |

Use Nuxeo's service
from your
javaapplication

Java local or RMI

nuxeo-services

Use Nuxeo's service

via WebService Http / WebService

Embed Nuxeo's services
inside your application nhuxeo-clien

{r
[nuxeo-services

Licenses

The Nuxeo source code is licensed under various open source licenses, all compatible with each other, non viral
and not limiting redistribution. Nuxeo also uses a number of third-party libraries that come with their own licenses.

Nuxeo Licenses

Nuxeo developers use the following licenses described on the Copyright and license headers page:

® | GPL 2.1: GNU Lesser General Public License v2.1
= EPL 1.0: Eclipse Public License v1.0
® AL 2.0: Apache License v2.0

Third-Party Licenses

Nuxeo may use (depending on which distribution or package is installed) the following libraries. These libraries have
been chosen because their licenses are compatible with those of the Nuxeo source code, open source, not viral and
do not limit redistribution.

The licenses used are:

AL 1.1: Apache License v1.1

AL 2.0: Apache License v2.0

BSD 2: BSD 2-Clause License

BSD 3: BSD 3-Clause License

CC BY 2.5: Creative Commons Attribution License 2.5

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 9

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/CORG/Copyright+and+license+headers
http://www.gnu.org/licenses/lgpl-2.1.html
http://www.eclipse.org/legal/epl-v10.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-1.1
http://www.apache.org/licenses/LICENSE-2.0.html
http://opensource.org/licenses/bsd-license.php
http://opensource.org/licenses/BSD-3-Clause
http://creativecommons.org/licenses/by/2.5/

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

CDDL 1.0: Common Development and Distribution License v1.0

CDDL 1.1: Common Development and Distribution License v1.1

EPL 1.0: Eclipse Public License v1.0

LGPL 2.1: GNU Lesser General Public License v2.1

LGPL 3: GNU Lesser General Public License v3

MIT: MIT License

W3C: W3C Software Notice and License

Jar Name

activation-1.1.jar

ant-1.7.0.jar

ant-launcher-1.7.0.jar

antisamy-1.4.4.jar

antlr-2.7.7.jar

antlr-runtime-3.1.3.jar

aopalliance-1.0.jar

apacheds-bootstrap-extra
ct-1.5.1.jar

apacheds-btree-base-1.5.
1.jar

apacheds-constants-1.5.1
Jar

apacheds-core-1.5.1.jar

apacheds-core-shared-1.
5.1.jar

apacheds-jdbm-store-1.5.
1.jar

apacheds-kerberos-share
d-1.5.1 jar

apacheds-protocol-shared
-1.5.1 jar

PD: Public Domain (not actually a license)

Project Version
JavaBeans Activation 1.1
Framework

Apache Ant 1.7.0
Apache Ant 1.7.0
AntiSamy 144
ANTLR v2 2.7.7
ANTLR v3 3.1.3
AOP Alliance 1.0
ApacheDS 1.5.1
ApacheDS 1.5.1
ApacheDS 1.5.1
ApacheDS 1.5.1
ApacheDS 1.5.1
ApacheDS 1.5.1
ApacheDS 1.5.1
ApacheDS 1.5.1

Copyright © 2010-2013 Nuxeo.

License

CDDL 1.0

AL2.0

AL2.0

BSD 3

PD

BSD 3

PD

AL2.0

AL2.0

AL2.0

AL2.0

AL2.0

AL2.0

AL2.0

AL 2.0

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

http://doc.nuxeo.com/x/GATF
http://glassfish.java.net/public/CDDLv1.0.html
http://glassfish.java.net/public/CDDL+GPL_1_1.html
http://www.eclipse.org/legal/epl-v10.html
http://www.gnu.org/licenses/lgpl-2.1.html
http://www.gnu.org/licenses/lgpl.html
http://opensource.org/licenses/mit-license.php
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
http://www.oracle.com/technetwork/java/jaf11-139815.html
http://www.oracle.com/technetwork/java/jaf11-139815.html
http://ant.apache.org
http://ant.apache.org
http://code.google.com/p/owaspantisamy/
http://www.antlr2.org
http://www.antlr.org
http://aopalliance.sourceforge.net
http://directory.apache.org/apacheds/1.5/
http://directory.apache.org/apacheds/1.5/
http://directory.apache.org/apacheds/1.5/
http://directory.apache.org/apacheds/1.5/
http://directory.apache.org/apacheds/1.5/
http://directory.apache.org/apacheds/1.5/
http://directory.apache.org/apacheds/1.5/
http://directory.apache.org/apacheds/1.5/

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

apacheds-schema-bootstr
ap-1.5.1.jar

apacheds-schema-registri
es-1.5.1 jar

apacheds-utils-1.5.1.jar
arg-2.8.8.jar
asm-3.0.jar

avalon-framework-4.1.3.ja
r

backport-util-concurrent-3.
1.jar

batik-css-1.7.jar
batik-ext-1.7.jar
batik-util-1.7.jar
bcmail-jdk15-1.45.jar
bcprov-jdk15-1.45.jar
c3p0-0.9.1 jar
caja-r3889.jar

chemistry-opencmis-client
-api-0.7.0.jar

chemistry-opencmis-client
-bindings-0.7.0.jar

chemistry-opencmis-client
-impl-0.7.0.jar

chemistry-opencmis-com
mons-api-0.7.0.jar

chemistry-opencmis-com
mons-impl-0.7.0.jar

ApacheDS

ApacheDS

ApacheDS

Apache Jena

ASM

Apache Avalon

backport-util-concurrent

Bouncy Castle

Bouncy Castle

c3p0

Caja

Apache Chemistry
OpenCMIS

Apache Chemistry
OpenCMIS

Apache Chemistry
OpenCMIS

Apache Chemistry
OpenCMIS

Apache Chemistry
OpenCMIS

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

1.5.1

1.5.1

1.5.1

2.8.8

3.0

3.1

1.7

1.7

1.7

1.45

1.45

0.9.1

3889

0.7.0

0.7.0

0.7.0

0.7.0

0.7.0

AL2.0

AL2.0

AL2.0

BSD 3

BSD 3

AL 1.1

PD

AL2.0

AL2.0

AL2.0

MIT

MIT

LGPL 2.1

AL2.0

AL2.0

AL2.0

AL2.0

AL2.0

AL 2.0

http://doc.nuxeo.com/x/GATF
http://directory.apache.org/apacheds/1.5/
http://directory.apache.org/apacheds/1.5/
http://directory.apache.org/apacheds/1.5/
http://jena.apache.org
http://asm.ow2.org
http://avalon.apache.org/
http://backport-jsr166.sourceforge.net
http://xmlgraphics.apache.org/batik/
http://xmlgraphics.apache.org/batik/
http://xmlgraphics.apache.org/batik/
http://www.bouncycastle.org/java.html
http://www.bouncycastle.org/java.html
http://sourceforge.net/projects/c3p0/
http://code.google.com/p/google-caja/
http://chemistry.apache.org/java/opencmis.html
http://chemistry.apache.org/java/opencmis.html
http://chemistry.apache.org/java/opencmis.html
http://chemistry.apache.org/java/opencmis.html
http://chemistry.apache.org/java/opencmis.html
http://chemistry.apache.org/java/opencmis.html
http://chemistry.apache.org/java/opencmis.html
http://chemistry.apache.org/java/opencmis.html
http://chemistry.apache.org/java/opencmis.html
http://chemistry.apache.org/java/opencmis.html

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

chemistry-opencmis-serve
r-bindings-0.7.0-classes.ja
r

chemistry-opencmis-serve
r-support-0.7.0.jar

com.noelios.restlet-1.0.7.j
ar

com.noelios.restlet.ext.ser
vlet-1.0.7 jar

commons-beanutils-1.6.ja
r

commons-betwixt-0.8.jar

commons-codec-1.4.jar

commons-collections-3.2.
ar

commons-dbcp-1.3-RC1.j
ar

commons-digester-1.8.jar

commons-el-1.0.jar

commons-fileupload-1.2.2
jar

commons-httpclient-3.1.ja
r

commons-io-1.4.jar
commons-jexI-1.1.jar
commons-pool-1.5.4.jar

connector-api-1.5.jar

dom4j-1.6.1.jar

Apache Chemistry
OpenCMIS

Apache Chemistry
OpenCMIS

Restlet

Restlet

Apache Commons
BeanUtils

Apache Commons Betwixt

Apache Commons Codec

Apache Commons
Collections

Apache Commons DBCP

Apache Commons
Digester

Apache Commons EL

Apache Commons
FileUpload

Apache Commons
HttpClient

Apache Commons IO

Apache Commons JEXL

Apache Commons Pool

J2EE Connector
Architecture (JSR 112)

dom4j

0.7.0

0.7.0

1.0.7

1.0.7

1.6

0.8

1.4

3.2

1.3-RC1

1.8

1.0

1.2.2

3.1

1.4

1.1

1.54

1.5

1.6.1

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

AL2.0

AL 2.0

CDDL 1.0

CDDL 1.0

AL2.0

AL2.0

AL 2.0

AL2.0

AL 2.0

AL 2.0

AL 2.0

AL 2.0

AL 2.0

AL 2.0

AL2.0

AL2.0

CDDL 1.0

BSD 3

http://doc.nuxeo.com/x/GATF
http://chemistry.apache.org/java/opencmis.html
http://chemistry.apache.org/java/opencmis.html
http://chemistry.apache.org/java/opencmis.html
http://chemistry.apache.org/java/opencmis.html
http://www.restlet.org
http://www.restlet.org
http://commons.apache.org/beanutils/
http://commons.apache.org/beanutils/
http://commons.apache.org/betwixt/
http://commons.apache.org/codec/
http://commons.apache.org/collections/
http://commons.apache.org/collections/
http://commons.apache.org/dbcp/
http://commons.apache.org/digester/
http://commons.apache.org/digester/
http://commons.apache.org/el/
http://commons.apache.org/fileupload/
http://commons.apache.org/fileupload/
http://hc.apache.org/httpclient-3.x/
http://hc.apache.org/httpclient-3.x/
http://commons.apache.org/io/
http://commons.apache.org/jexl/
http://commons.apache.org/pool/
http://jcp.org/en/jsr/detail?id=112
http://jcp.org/en/jsr/detail?id=112
http://dom4j.sourceforge.net/

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Editablelmage-0.9.5.jar
ehcache-core-2.5.2.jar

ejb-api-3.0.jar

ezmorph-1.0.4.jar
flute-1.3-gg2.jar
fontbox-1.6.0.jar

geronimo-connector-2.2.1
-NX1.jar

geronimo-transaction-2.2.
1.jar

gin-1.5.0.jar

gmbal-api-only-3.1.0-b001
jar

google-collections-1.0-rc2
Jjar

groovy-all-1.5.7 jar
gson-1.4.jar
guice-3.0.jar

guice-assistedinject-3.0.ja
r

guice-internal-2.0.jar
guice-jmx-3.0.jar
guice-servlet-3.0.jar
gwt-dispatch-1.0.0.jar
gwt-habyt-upload-0.1.jar

gwt-servlet-2.4.0.jar

Mistral

Ehcache

Enterprise JavaBeans

(JSR 220)

EZMorph

Flute

Apache PDFBox

Apache Geronimo

Apache Geronimo

Google Collections

Groovy
Google Gson
Google Guice

Google Guice

Google Guice
Google Guice
Google Guice

GWT Dispatch

GWT HABYT

GWT

0.9.5

2.5.2

3.0

1.04

1.3-gg2

1.6.0

2.2.1-NX1

2.21

1.5.0

3.1.0-b001

1.0-rc2

1.5.7

1.4

3.0

3.0

2.0

3.0

3.0

1.0.0

0.1

24.0

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 13

AL2.0

AL2.0

CDDL 1.0

AL2.0

Wa3C

AL2.0

AL 2.0

AL 2.0

AL 2.0

CDDL 1.0

AL 2.0

AL 2.0

AL2.0

AL2.0

AL2.0

AL2.0

AL2.0

AL2.0

BSD 3

AL 2.0

AL2.0

http://doc.nuxeo.com/x/GATF
http://mistral.tidalwave.it/
http://ehcache.org
http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=220
http://ezmorph.sourceforge.net/
http://code.google.com/p/google-web-toolkit/source/browse/tools/lib/w3c/flute/
http://pdfbox.apache.org
http://geronimo.apache.org
http://geronimo.apache.org
http://code.google.com/p/google-gin/
http://java.net/projects/gmbal/pages/Home
http://code.google.com/p/google-collections/
http://groovy.codehaus.org
http://code.google.com/p/google-gson/
http://code.google.com/p/google-guice/
http://code.google.com/p/google-guice/
http://code.google.com/p/google-guice/
http://code.google.com/p/google-guice/
http://code.google.com/p/google-guice/
http://code.google.com/p/gwt-dispatch/
http://code.google.com/p/gwt-habyt/
https://developers.google.com/web-toolkit/

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

ha-api-3.1.8.jar

hibernate-annotations-3.4.
0.GA.jar

hibernate-commons-annot
ations-3.1.0.GA.jar

hibernate-core-3.3.2.GA.j
ar

hibernate-entitymanager-
3.4.0.GA jar

hibernate-validator-3.1.0.
GA.jar

howl-1.0.1-1.jar
hsqldb-1.8.0.1.jar
htmlparser-1.0.7 jar
httpclient-4.1.jar
httpcore-4.1.jar
icu4j-4.0.1.jar

iri-0.8.jar

itext-2.1.7.jar

itext-rtf-2.1.7 jar
jackson-core-asl-1.8.1.jar

jackson-mapper-asl-1.8.1.
jar

java-cup-0.11a.jar
javacc-4.0.jar
javasimon-core-2.5.0.jar

javasimon-jdbc3-2.5.0.jar

Glassfish

Hibernate

Hibernate

Hibernate

Hibernate

Hibernate

HOWL

HSQLDB

Validator.nu HTML Parser

Apache HttpComponents

Apache HttpComponents

ICU

Apache Jena

iText

iText

Jackson

Jackson

O
cC
T

JavaCC

Simon

Simon

3.1.8

3.4.0.GA

3.1.0.GA

3.3.2.GA

3.4.0.GA

3.1.0.GA

1.0.1-1

1.8.0.1

1.0.7

41

4.1

4.0.1

0.8

21.7

217

1.8.1

1.8.1

10k

4.0

2.5.0

2.5.0

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

CDDL 1.0

LGPL 2.1

LGPL 2.1

LGPL 2.1

LGPL 2.1

LGPL 2.1

BSD 2

BSD 3

MIT + BSD 3

AL2.0

AL2.0

MIT

BSD 3

LGPL 2.1

LGPL 2.1

AL2.0

AL2.0

MIT*

BSD 2

LGPL 2.1

LGPL 2.1

http://doc.nuxeo.com/x/GATF
http://glassfish.java.net
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://howl.ow2.org/
http://hsqldb.org/
http://about.validator.nu/htmlparser/
http://hc.apache.org
http://hc.apache.org
http://site.icu-project.org
http://jena.apache.org
http://itextpdf.com
http://itextpdf.com
http://jackson.codehaus.org
http://jackson.codehaus.org
http://www2.cs.tum.edu/projects/cup/
http://java.net/projects/javacc
http://code.google.com/p/javasimon/
http://code.google.com/p/javasimon/

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

javasimon-jmx-2.5.0.jar
javassist-3.9.0.GA. jar

javax.inject-1.jar

jaxb-impl-2.2.4-1 jar
jaxws-rt-2.2.5.jar
jboss-el-1.0_02.CR2.jar
jpboss-seam-2.1.0.SP1 jar

jboss-seam-excel-2.1.0.S
P1.jar

jboss-seam-jul-2.1.0.SP1.
ar

jboss-seam-pdf-2.1.0.SP1
jar

jboss-seam-remoting-2.1.
0.SP1. jar

jboss-seam-rss-2.1.0.SP1
Jar

jboss-seam-ui-2.1.0.SP1.j
ar

jcip-annotations-1.0.jar

jdbm-1.0.jar
jdom-1.0.jar
jempbox-1.6.0.jar
jena-2.6.4-NX.jar
jericho-html-3.2.jar

jersey-core-1.11-minimal.j
ar

Simon

Javassist

Dependency Injection for

Java (JSR 330)

JAXB Rl

JAX-WS Rl

Java Concurrency in
Practice

Apache PDFBox

Apache Jena

Jericho HTML Parser

Jersey

2.5.0

3.9.0.GA

2.2.41

2.2.5

1.0_02.CR2

2.1.0.SP1

2.1.0.SP1

2.1.0.SP1

2.1.0.SP1

2.1.0.SP1

2.1.0.SP1

2.1.0.SP1

1.0

1.0

1.6.0

2.6.4-NX

3.2

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

LGPL 2.1

AL2.0

AL2.0

CDDL 11

CDDL 11

AL2.0

LGPL 2.1

LGPL 2.1

LGPL 2.1

LGPL 2.1

LGPL 2.1

LGPL 2.1

LGPL 2.1

CCBY25

BSD 3

BSD 3

AL 2.0

BSD 3

LGPL 2.1

CDDL 11

http://doc.nuxeo.com/x/GATF
http://code.google.com/p/javasimon/
http://www.jboss.org/javassist
http://www.jcp.org/en/jsr/detail?id=330
http://www.jcp.org/en/jsr/detail?id=330
http://jaxb.java.net
http://jax-ws.java.net
http://www.seamframework.org
http://www.seamframework.org
http://www.seamframework.org
http://www.seamframework.org
http://www.seamframework.org
http://www.seamframework.org
http://www.seamframework.org
http://www.seamframework.org
http://jcip.net
http://jcip.net
http://jdbm.sourceforge.net
http://www.jdom.org
http://pdfbox.apache.org
http://jena.apache.org
http://jericho.htmlparser.net/
http://jersey.java.net

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

jersey-server-1.11. jar
jersey-servlet-1.11.jar
jetty-6.1.26.jar
jetty-util-6.1.26.jar
jline-0.9.94 jar

jmd-0.8.1-tomasol-3e60e3
6137.jar

jmimemagic-0.1.2.jar
joda-time-1.6.jar

jodconverter-core-3.0-NX
6.jar

jsecurity-0.9.0.jar
jsf-api-1.2_12.jar
jsf-facelets-1.1.15.B1.jar
jsf-impl-1.2_12.jar
json-20070829.jar
json-lib-2.4-jdk15.jar
json-simple-1.1.jar

jsr181-1.0.jar

jsr250-api-1.0.jar

jsr311-api-1.1.1.jar
jstl-1.1.2.jar

jta-1.1.jar

iMimeMagic
Joda Time

JODConverter

JSecurity

JavaServer Faces

Facelets

JavaServer Faces

JSON

JSON-lib

JSON.simple

Web Services Metadata
for Java (JSR 181)

Common Annotations for

Java (JSR 250)

JAX-RS (JSR 311)

JSP Standard Tag Library

Java Transaction API

1.11

1.11

6.1.26

6.1.26

0.9.94

0.8.1-tomasol-3e60e3613
7

0.1.2

1.6

3.0-NX6

0.9.0

1.2_12

1.1.15.B1

1.2_12

20070829

2.4

1.1

1.0

1.0

1.1.1

1.1

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

CDDL 1.1

CDDL 1.1

AL2.0

AL2.0

BSD 3

MIT

AL 2.0

AL2.0

LGPL 3

AL2.0

CDDL 1.0

CDDL 1.0

CDDL 1.0

MIT

AL2.0

AL2.0

CDDL 1.0

CDDL 1.0

CDDL 1.0

CDDL 1.0

CDDL 1.0

http://doc.nuxeo.com/x/GATF
http://jersey.java.net
http://jersey.java.net
http://jetty.codehaus.org/jetty/
http://jetty.codehaus.org/jetty/
http://jline.sourceforge.net
https://github.com/tomasol/jmd
http://jmimemagic.sourceforge.net/index.html
http://joda-time.sourceforge.net
http://code.google.com/p/jodconverter/
http://sourceforge.net/projects/jsecurity/
http://javaserverfaces.java.net/
http://facelets.java.net
http://javaserverfaces.java.net/
http://www.json.org/java/index.html
http://json-lib.sourceforge.net
http://code.google.com/p/json-simple/
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=181
http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=250
http://jsr311.java.net
http://jstl.java.net
http://www.oracle.com/technetwork/java/javaee/jta/index.html

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

juel-impl-2.1.2.jar

juh-3.1.0.jar
jurt-3.1.0.jar
jxI-2.6.8-seam.jar
logkit-1.0.1.jar

management-api-3.0.0-b0
12 jar

metadata-extractor-2.3.1.]
ar

milyn-commons-1.3.1 jar

milyn-magger-1.3.1-NXP-
7750.jar

mimepull-1.6.jar
mina-core-1.1.2.jar
mvel2-2.0.19.jar
nekohtml-1.9.9.jar
oauth-20090531 .jar

oauth-consumer-2009053
1.jar

oauth-httpclient3-2009053
1.jar

oauth-provider-20090531.
jar

ooxml-schemas-1.0.jar
opencsv-2.1.jar

Operations-0.9.5.jar

Java Unified Expression

Language

Java Uno Helper

Java Uno Runtime

Java Excel API

Apache Avalon

Glassfish

Metadata Extractor

Smooks

Smooks

MIME Pull

Apache MINA

MVEL

NekoHTML

OAuth

Apache POI
opencsv

Mistral

21.2

2.6.8

1.0.1

3.0.0-b012

2.3.1

1.3.1

1.3.1-NXP-7750

1.6

1.1.2

2.0.19

1.9.9

20090531

20090531

20090531

20090531

1.0

2.1

0.9.5

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 17

AL2.0

LGPL 3

LGPL 3

LGPL 2.1

AL 1.1

CDDL 1.0

AL2.0

LGPL 2.1

LGPL 2.1

CDDL 11

AL 2.0

AL 2.0

AL2.0

AL2.0

AL2.0

AL2.0

AL2.0

AL2.0

AL2.0

AL2.0

http://doc.nuxeo.com/x/GATF
http://juel.sourceforge.net
http://juel.sourceforge.net
http://www.openoffice.org/udk/
http://www.openoffice.org/udk/
http://jexcelapi.sourceforge.net
http://avalon.apache.org
http://glassfish.java.net
http://code.google.com/p/metadata-extractor/
http://www.smooks.org/
http://www.smooks.org/
http://mimepull.java.net
http://mina-core
http://mvel.codehaus.org
http://nekohtml.sourceforge.net
http://oauth.net/code/
http://oauth.net/code/
http://oauth.net/code/
http://oauth.net/code/
http://poi.apache.org
http://opencsv.sourceforge.net
http://mistral.tidalwave.it/

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

org.eclipse.equinox.comm
on-3.6.0.v20100503.jar

org.eclipse.equinox.p2.cu
df-1.15-NX.jar

org.osgi.compendium-4.2.
0.jar

org.restlet-1.0.7.jar

org.restlet.ext.fileupload-1
.0.7 jar

org.restlet.gwt-1.1.10.jar
org.satdj.core-2.3.1.jar
org.sat4j.pb-2.3.1.jar
oro-2.0.8.jar
osgi-core-4.1.jar
pdfbox-1.6.0.jar
persistence-api-1.0.jar
plexus-utils-1.5.6.jar
poi-3.5-betab.jar
poi-ooxml-3.5-betab.jar

poi-scratchpad-3.5-betab.|
ar

policy-2.2.2.jar
quartz-all-1.6.3.jar

relaxngDatatype-2002041
4 jar

resolver-20050927 .jar

richfaces-api-3.3.1.GA.jar

Eclipse Equinox

CUDEF Resolver

Apache Jakarta ORO

OSGi

Apache PDFBox

Java Persistence API

Plexus Common Utilities

Apache POI
Apache POI

Apache POI

Glassfish

Quartz Scheduler

RELAX NG

JAX-WS Rl

RichFaces

3.6.0.v20100503

1.15-NX

4.2.0

1.0.7

1.0.7

1.1.10

2.3.1

2.3.1

2.0.8

4.1

1.6.0

1.0

1.5.6

3.5-betab

3.5-betab

3.5-betab

222

1.6.3

20020414

20050927

3.3.1.GA

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 18

EPL 1.0

EPL 1.0

AL2.0

CDDL 1.0

CDDL 1.0

CDDL 1.0

LGPL 2.1

LGPL 2.1

AL2.0

AL2.0

AL 2.0

CDDL 1.0

AL2.0

AL2.0

AL2.0

AL2.0

CDDL 1.0

AL2.0

BSD 3

AL 2.0

LGPL 2.1

http://doc.nuxeo.com/x/GATF
http://www.eclipse.org/equinox/
http://wiki.eclipse.org/Equinox/p2/CUDFResolver
http://www.osgi.org/
http://www.restlet.org
http://www.restlet.org
http://www.restlet.org
http://www.sat4j.org
http://www.sat4j.org
http://jakarta.apache.org/oro/
http://www.osgi.org/
http://pdfbox.apache.org
http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
http://plexus.codehaus.org/plexus-utils/
http://poi.apache.org
http://poi.apache.org
http://poi.apache.org
http://glassfish.java.net
http://quartz-scheduler.org
http://sourceforge.net/projects/relaxng/
http://jax-ws.java.net
http://www.jboss.org/richfaces

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

richfaces-impl-3.3.1.GA-N
X6.jar

richfaces-ui-3.3.1.GA-NX2
Jar

ridl-3.1.0.jar

rome-1.0.jar
saaj-api-1.3.3.jar
saaj-impl-1.3.10.jar
sac-1.3.jar

sanselan-0.97-incubator.
ar

shared-asn1-0.9.7 .jar
shared-ldap-0.9.7 jar

shared-ldap-constants-0.9
7.jar

shindig-common-1.1-BET
A5-incubating.jar

shindig-features-1.1-BET
A5-incubating.jar

shindig-gadgets-1.1-BET
A5-incubating.jar

shindig-social-api-1.1-BE
TA5-incubating.jar

slf4j-api-1.6.0.jar
slf4j-log4j12-1.6.0.jar
snakeyaml-1.7 .jar
stax-api-1.0.jar

stax-ex-1.6.jar

RichFaces

RichFaces

Java Runtime Interface

Definition Library

Rome

SAAJ

SAAJ

Simple API for CSS

Apache Commons
Sanselan

ApacheDS
ApacheDS

ApacheDS

Apache Shindig

Apache Shindig

Apache Shindig

Apache Shindig

92}
=
Tl
N
I

(@)
=
l
IN
(.

SnakeYAML

2
>
<

2
>
<

3.3.1.GA-NX6

3.3.1.GA-NX2

3.1.0

1.0
1.3.3
1.3.10
1.3

0.97

0.9.7
0.9.7

0.9.7

1.1-BETAb-incubating

1.1-BETAS5-incubating

1.1-BETAS5-incubating

1.1-BETAS5-incubating

1.6.0
1.6.0
1.7
1.0

1.6

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

LGPL 2.1

LGPL 2.1

LGPL 3

AL2.0

CDDL 1.0

CDDL 1.0

W3C

AL2.0

AL2.0

AL2.0

AL 2.0

AL 2.0

AL2.0

AL2.0

AL2.0

MIT

MIT

AL 2.0

AL 2.0

AL2.0

http://doc.nuxeo.com/x/GATF
http://www.jboss.org/richfaces
http://www.jboss.org/richfaces
http://www.openoffice.org/udk/
http://www.openoffice.org/udk/
http://java.net/projects/rome/pages/Home
http://java.net/projects/saaj/
http://java.net/projects/saaj/
http://www.w3.org/Style/CSS/SAC/Overview.en.html
http://commons.apache.org/imaging/
http://commons.apache.org/imaging/
http://directory.apache.org/apacheds/1.5/
http://directory.apache.org/apacheds/1.5/
http://directory.apache.org/apacheds/1.5/
http://shindig.apache.org
http://shindig.apache.org
http://shindig.apache.org
http://shindig.apache.org
http://www.slf4j.org
http://www.slf4j.org
http://code.google.com/p/snakeyaml/
http://stax.codehaus.org
http://stax.codehaus.org

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

stax2-api-3.1.1.jar StAX 3.1.1 AL 2.0
streambuffer-1.2.jar Glassfish 1.2 CDDL 1.0
stringtemplate-3.2.jar StringTemplate 3.2 BSD 3
unoil-3.1.0.jar Uno Interface Library 3.1.0 LGPL 3
webdav-jaxrs-1.1.1.jar WebDAV Support for 1.1.1 LGPL 2.1
JAX-RS
wem-2.0.2.jar WikiModel 2.0.2 EPL 1.0
woodstox-core-asl-4.1.1.j Woodstox 411 AL 2.0
ar
xbean-naming-3.9.jar Apache Geronimo 3.9 AL 2.0
xerceslmpl-2.9.1.jar Apache Xerces2 2.9.1 AL 2.0
xmlbeans-2.3.0.jar XMLBeans 2.3.0 AL 2.0
xpp3_min-1.1.4c.jar XPP3 1.1.4c BSD 3
xsom-20081112.jar XSOM 20081112 CDDL 1.0
xstream-1.3.1.jar XStream 1.3.1 BSD 3
yarfraw-0.92.jar YAFRAW 0.92 AL 2.0
Architecture

® Architecture overview

® About the content repository

® Platform features quick overview

¢ Component model overview

® API| and connectors

* Ul frameworks

® Nuxeo Deployment model

® Deployment options

[]

Performance management for the Nuxeo Platform

Architecture overview

Technologies in Nuxeo EP

100% Java Based
Nuxeo EP is 100% built on top of Java: as long as a JVM (Java Virtual Machine) is available in your target

environment, you should be able to run Nuxeo EP.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

http://doc.nuxeo.com/x/GATF
http://stax.codehaus.org
http://glassfish.java.net
http://www.stringtemplate.org
http://www.openoffice.org/udk/
http://java.net/projects/webdav-jaxrs
http://java.net/projects/webdav-jaxrs
http://wikimodel.sourceforge.net/
http://woodstox.codehaus.org
http://geronimo.apache.org
http://xerces.apache.org/xerces2-j/
http://xmlbeans.apache.org
http://www.extreme.indiana.edu/xgws/xsoap/xpp/mxp1/index.html
http://xsom.java.net
http://xstream.codehaus.org
http://yarfraw.sourceforge.net

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Nuxeo EP requires at least Java 5 (we use Generics and Annotation) and is validated against Sun JDK version 5
and 6.

POJO and JEE

The Nuxeo platform is designed so that you can run services and components in various environments:

® on bare Java,
® in a servlet container,
® in a JEE container (EAR including EJB3 bindings).

Nuxeo components and services will leverage the Java EE infrastructure if available: JTA transaction management,
JAAS security, EJB3 resource pooling...

OSGi inspired component model
Nuxeo components and services are packaged like an OSGi Bundle.

Each software part of Nuxeo EP is packaged in a jar that declares:

® its dependencies,
® the components provided,
® the services provided.

Nuxeo extends the OSGi model to include needed features like service binding and extension points.

Leverage existing open source frameworks

Nuxeo integrates many existing open source frameworks. When something that works exists in open source we
prefer to integrate it rather than rewrite it.

We integrate the following open source frameworks:

Drools: for rules management,

Seam: used for the Web Component model in the JSF Ul toolkit,
Shindig: used as the infrastructure provider for OpenSocial,
Jena RDF: the RDF provider.

This one is deprecated

® JackRabbit: since Nuxeo has introduced VCS.

Main design goals

The main design goals of the Nuxeo EP architecture are to provide:

® powerful and clean solutions to configure and extend the platform,
® agility to deploy and integrate it in a complex environment.

These 2 points are the main reasons for the Bundles/Components/Service model we use.

The next paragraph will present how we achieve these goals.

10,000 foot view

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 21

http://doc.nuxeo.com/x/GATF

nuXxeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

From a 10,000 foot view, the Nuxeo platform can be separated in 4 layers:

Nuxeo EP Architecture

Nuxeo Ul Frameworks
Flexible choice of interfaces

Nuxeo ECM Services
Modular set of content services

Nuxeo Core
Advanced content repository

Nuxeo Runtime
Component and service model

Nuxeo Runtime
Nuxeo Runtime provides the component, service and deployment model used to make the platform run.

Nuxeo Runtime is based on the OSGi component model but adds some features like:

® aservice lookup and binding system,
® an extension point system,
® adeployment system.

Nuxeo components and services run on top of Nuxeo Runtime. As a consequence, Nuxeo EP can run in any
environment that is supported by Nuxeo Runtime.

This basically means that Nuxeo Runtime is also an abstraction layer that helps Nuxeo EP run in different
environments.

Nuxeo Core
The Nuxeo Core layer contains all the services and components required to manage document storage.

Nuxeo Core can be used independently as an embeddable Document Repository.

Nuxeo Services

Nuxeo Services contains content management services and components:

* workflows,

® audit service,

® comment service,
[]

All these services and components have some common points:

¢ they almost all use Nuxeo Core (because they provide services bound to Documents),
® they are designed as generic and as configurable as possible,
* they don't depend on any Ul layer.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 22

http://doc.nuxeo.com/x/GATF

nuXxeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

If you don't want to use the Uls provided by Nuxeo, but simply do service calls from your application, you will use the
Nuxeo services layer directly.

The gadget below lists the services deployed in the DM distribution :

Nuxeo Services

Nuxeo client technologies

On top of the service layer, Nuxeo EP provides:

® several client technology frameworks (Web 2.0, RichClient, RIA ...),
® reusable building blocks.

For example, when using JSF/Seam web technology, Nuxeo EP provides ready to use screens and buttons for most
of the features and services of the platform.

This allows you to easily assemble a Web Application without having to rebuild everything from scratch or
deconstruct a pre-built monolithic application.

A
o Framework

—h

--mg Framework

Presentation Services Storage

Nuxeo Runtime

Easy customization and integration

One of the main goals of Nuxeo EP is to provide an easy and clean way to customize the platform for your
application needs.

For that, Nuxeo Runtime provides an Extension Point system that can be used to:

® configure services and components (XML configuration),
® extend existing services and components (Java code or scripting).

The extension point model is used everywhere inside Nuxeo EP. This means there is only one model for all
components and services.

You use the same model to configure storage layers as to configure buttons in the Web UlI.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 23

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/plugins/servlet/gadgets/ifr?container=atlassian&mid=66572845056&country=GB&lang=en&view=default&view-params=%7B%22writable%22%3A%22false%22%7D&st=atlassian%3AA0d%2BeVP2Dsci3WrlMZyLGnhS8%2Bhq%2FJVnBD9kORv9j0CluuW5M7pkmqk8L%2B7ldZv8XQ0lpS8jQ15YOsSOyHrZ%2B4dPduKCXTdfUIObbj5wVPzIiFeSrvQ4baoOio7D4nL4%2F3zmS7qdEWqBlnqhJowRefBS4ByI%2BKJIazevu%2F1uBUF4qdU%2BULg9ycS7friMS%2B4y6gT2gvVhdykmBC9%2Bz6y0JQta0z%2F9Ba6sNg9pDwbrWMR5CqQ%2B%2FcWGS14qMSRk1xIhiDJvOQ%3D%3D&up_title=Nuxeo+Services&url=http%3A%2F%2Fexplorer.nuxeo.org%2Fnuxeo%2Fsite%2Fgadgets%2Fservices%2Fservices.xml&libs=auth-refresh#rpctoken=1446676691

nuXxeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

NuxeoUl NuxeoUl NuxeoUl Ppjug Look Navigation actions

MNuxeo Runtime

Connector

33
Er gr I

In the current version of Nuxeo EP, there are about 200 extension points available.

This means:

¢ you can really do a lot with simple configuration;
® you can do customization that can be upgraded (extension points are maintained with the platform).

To leverage the Extension Points capabilities, you can either:

® write XML configuration,
¢ use Nuxeo Studio to generate the XML for you.

In terms of customization, the most common tasks include:

define custom schemas and Document types (supported by Nuxeo Studio),
define custom forms (supported by Nuxeo Studio),
define custom life-cycles (supported by Nuxeo Studio),
enforce business policies:
® use content automation (supported by Nuxeo Studio),
® write custom listener scripts,
® customize Web Ul:
® make your own branding (supported by Nuxeo Studio),
® add buttons, tabs, links, views (supported by Nuxeo Studio),
® build your own theme via the ThemeManager,
® add workflows.

If you need to extend Nuxeo EP or integrate it with existing applications, our platform also provides a lot of
advantages:

* Nuxeo EP provides several APIs to access services (Java, RMI, SOAP, JAX-RS, ...),
® Nuxeo EP is based on standards (OSGi, JTA, JCA, JAAS, EJBS, JAX-RS, JAX-WS ...),
® You can use extension points to inject your code into the platform.

The last point is probably the most important.
Thanks to the extension point system and easy-to-use tools around - Nuxeo Studio and Nuxeo IDE - you can write
you business code - without large technical knowledge - and inject it cleanly in the right component of Nuxeo EP:

® no need to hack to make it run,
® your custom code will be based on maintained extension points and interfaces and will be able to be easily

upgraded.
About the content repository

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 24

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/Studio
http://doc.nuxeo.com/display/IDEDOC/Nuxeo+IDE+Documentation+Center

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

In this section:

® Document in Nuxeo
® Document vs File
® Schemas
® Document Types

® Life Cycle

® Security management
® ACL model
® Security Policies

Indexing and Query

® |ndexing
° uery support

Other repository features
® Versioning
® Proxies
® Event systems

® Repository Storage
® Nuxeo Visible Content Store (VCS)
® Apache Jackrabbit Backend

Advanced features
® | azy Loading and binary files streaming
® Transaction management
® DocumentModel Adapter

Document in Nuxeo

Document vs File
Inside the Nuxeo Repository, a document is not just a simple file.
A document is defined as a set of fields.

Fields can be of several types:

® simple fields (String, Integer, Boolean Date, Double),
¢ simple lists (multi-valued simple field),
® complex type.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 25

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

- - =-"—-"-""=—-"=--"-" - == = = = = = =1
| Simple file | | Nuxeo document |
I I

I I
| | | Creation date 01/01/2010 |

odification date
I I Modification d 10/01/2010
| I | Expiration date 01/01/2011 I
I | | [Auner Bil |
) I Contributors Bill, John, Bob I

I File I

| Address 1 rue Victor Hugo |
| e | | 75016 Paris |
I MyFile.pdf I)

| Life cycle state wgjid |
I I

I FL?) I
| | File
I | I |
| ' | MyFile.pdf '

| Version |
I | I Security descriptors |
I I

I I
L - - - - - - - - - - - -l - - - - - - - - - - -

A file is a special case of a complex field that contains:

a binary stream,
a filename,

a mime-type,

a size.

As a result, a Nuxeo Document can contain 0, 1 or several files.

In fact, inside the Nuxeo repository, even a Folder is seen as a document because it holds meta-data (title, creation
date, creator, ...).

Schemas
Document structure is defined using XSD schemas.

XSD schemas provide:

® a standard way to express structure,
® a way to define meta-data blocks.

Each document type can use one or several schemas.

Here is a simple example of a XSD schema used in Nuxeo Core (a subset of Dublin Core):

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 26

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<?xml version="1.0"?>

<xs:schema
targetNamespace="http://www.nuxeo.org/ecm/schemas/dublincore/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:nxs="http://www.nuxeo.org/ecm/schemas/dublincore/">

<xs:simpleType name="subjectList">
<xs:list itemType="xs:string"/>

</xs:simpleType>

<xs:simpleType name="contributorList">
<xs:list itemType="xs:string"/>

</xs:simpleType>

<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element
<xs:element

name="title" type="xs:string"/>
name="description" type="xs:string"/>
name="subjects" type="nxs:subjectList"/>
name="rights" type="xs:string"/>
name="source" type="xs:string"/>
name="coverage" type="xs:string"/>
name="created" type="xs:date"/>
name="modified" type="xs:date"/>
name="issued" type="xs:date"/>
name="valid" type="xs:date"/>
name="expired" type="xs:date"/>
name="format" type="xs:string"/>
name="language" type="xs:string"/>
name="creator" type="xs:string"/>

<xs:element name="contributors" type="nxs:contributorList"/>
</xs:schema>

Document Types
Inside the Nuxeo Repository, each document has a Document Type.

A document type is defined by:

® aname,

® a set of schemas,

® a set of facets,

® abase document type.

Document types can inherit from each other.
By using schemas and inheritance you can carefully design how you want to reuse the meta-data blocks.

At pure storage level, the Facets are simple declarative markers. These marker are used by the repository and other
Nuxeo EP services to define how the document must be handled.

Default facets include:

® Versionnable,

¢ HiddenlnNavigation,
®* Commentable,

® Folderish,

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 27

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Here are some Document Types definition examples:

<doctype name="File" extends="Document">
<schema name="common" />
<schema name="file"/>
<schema name="dublincore"/>
<schema name="uid"/>
<schema name="files"/>
<facet name="Downloadable"/>
<facet name="Versionable"/>
<facet name="Publishable"/>
<facet name="Indexable"/>
<facet name="Commentable"/>

</doctype>

<doctype name="Folder" extends="Document">
<schema name="common" />
<schema name="dublincore"/>
<facet name="Folderish"/>
<subtypes>
<type>Folder</type>
<type>File</type>
<type>Note</type>
</subtypes>
</doctype>

At Ul level, Document Types defined in the Repository are mapped to high level document types that have
additionnal attributes:

display name,
category,
icon,

visibility,

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<type id="Folder">
<label>Folder</label>
<icon>/icons/folder.gif</icon>
<bigIcon>/icons/folder_100.png</bigIcon>
<icon-expanded>/icons/folder_open.gif</icon-expanded>
<category>Collaborative</category>
<description>Folder.description</description>
<default-view>view_documents</default-view>
<subtypes>
<type>Folder</type>
<type>File</type>
<type>Note</type>
</subtypes>
<layouts mode="any">
<layout>heading</layout>
</layouts>
<layouts mode="edit">
<layout>heading</layout>
<layout>dublincore</layout>
</layouts>
<layouts mode="listing">
<layout>document_listing</layout>
<layout>document_listing compact_2_ columns</layout>
<layout>document_listing_icon_2_columns</layout>
</layouts>
</type>

Life Cycle
Nuxeo Core includes a Life-Cycle service.
Each document type can be bound to a life-cycle.

The life-cycle is responsible for defining:

® the possible states of the document (ex: draft, validated, obsolete, ...),
® the possible transitions between states (ex : validate, make obsolete, ...).

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

29

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

4 N\

Approve Obsolete Delete

obhsolete deleted

Back to project

\ Undelete /

Life-cycle is not workflow, but:

* workflows usually use the life-cycle of the document as one of the state variable of the process,
® you can simulate simple review process using life-cycle and listeners (very easy to do using Nuxeo Studio an
d content automation).

Security management

By default, security is always on inside Nuxeo Repository: each time a document is accessed or a search is issued,
security is verified.

Nuxeo Repository security relies on a list of unitary permissions that are used within the repository to grant or deny
access. These atomic permissions (Read_Children, Write_Properties ...) are grouped in Permissions Groups (Read,
Write, Everything ...) so that security can be managed more easily.

Nuxeo comes with a default set of permissions and permissions groups but you can contribute yours too.

ACL model
The main model for security management is based on an ACL (Access Control List) system.

Each document can be associated with an ACP (Access Control Policy).This ACP is composed of a list of ACLs that
itself is composed of ACEs (Access Control Entry).

Each ACE is a triplet:

* User or Group,
® Permission or Permission group,
® grant or deny.

ACP are by default inherited: security check will be done against the merged ACP from the current document and all
its parent. Inheritance can be blocked at any time if necessary.

Each document can be assigned several ACLs (one ACP) is order to better manage separation of concerns
between the rules that define security:

® document has a default ACL: the one that can be managed via back-office Ul,

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 30

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/Studio/Nuxeo+Studio+Documentation+Center

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

¢ document can have several workflows ACLs: ACLs that are set by workflows including the document.

Thanks to this separation between ACLs, it's easy to have the document return to the right security if workflow is
ended.

Security Policies

The ACP/ACL/ACE model is already very flexible. But is some cases, using ACLs to define the security policy is not
enough. A classic example would be confidentiality.

Imagine you have a system with confidential documents and you want only people accredited to the matching
confidentiality level to be able to see them. Since confidentiality will be a meta-data, if you use the ACL system, you
have to compute a given ACL each time this meta-data is set. You will also have to compute a dedicated user group
for each confidentiality level.

In order to resolve this kind of issue, Nuxeo Repository includes a pluggable security policy system. This means you
can contribute custom code that will be run to verify security each time it's needed.

Such polices are usually very easy to write, since in most of the case, it's only a match between a user attribute
(confidentiality clearance) and the document's meta-data (confidentiality level).

Custom security policy could have an impact on performance, especially when doing open search on a big content
repository. To prevent this risk, security policies can be converted in low level query filters that are applied at storage
level (SQL when VCS is used) when doing searches.

Indexing and Query

Indexing

All documents stored in Nuxeo Repository are automatically indexed on their metadata. Files contained in
Documents are also by default Full Text indexed.

For that, Nuxeo Core includes a conversion service that provides full text conversion from most usual formats
(MSOffice, OpenOffice, PDF, Html, Xml, Zip, RFC 822, ...).

So, in addition to meta-data indexing, the Nuxeo Repository will maintain a fulltext index that will be composed of: all
meta-data text content + all text extracted from files.

Configuration options depend on the storage backend, but you can define what should be put into the fulltext index
and even define several separated fulltext indexes.

Query support
Of course, indexing is only interesting if you can issue queries.

The Nuxeo Repository includes a Query system with a pluggable QueryParser that lets you do search against the
repository content. The Nuxeo Repository supports 2 types of queries:

¢ NXQL: Native SQL Like query language
¢ CMISQL: Normalized query language included in CMIS specification

Both query languages let you search documents based on Keyword match (meta-data) and/or full text
expressions. You can also manage ordering.

In CMISQL you can do cross queries (i.e. : JOINS).

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 31

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/GLOS/VCS
http://doc.nuxeo.com/display/GLOS/CMIS

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Here is an example of a NXQL query, to search for all non-folderish documents that have been contributed by a
given user:

SELECT * FROM Document WHERE

dc:contributors = ? // simple match on a multi-valued field

AND ecm:mixinType !='Folderish' // use facet to remove all folderish documents

AND ecm:mixinType !='HiddenInNavigation' // use facet to remove all documents that should be hidden
AND ecm:isCheckedInVersion = 0 // only get checked-out documents

AND ecm:isProxy = 0 AND // don't return proxies

ecm:currentLifeCycleState != 'deleted' // don't return documents that are in the trash

As you may see, there is no security clause, because the Repository will always only return documents that the
current user can see. Security filtering is built-in, so you don't have to post-filter results returned by a search, even if
you use complex custom security policies.

Other repository features

Versioning
The Nuxeo Repository includes a versioning system.

At any moment, you can ask the repository to create and archive a version from a document. Versioning can be
configured to be automatic (each document modification would create a new version) or on demand (this is bound to
a radio button in default Nuxeo DM Ul).

Each version has:

® alabel,
® a major version number,
® a minor version number.

The versioning service is configurable so you can define the numbering policy. In fact, even the version storage
service is pluggable so you can define your own storage for versions.

Proxies
The Nuxeo Repository includes the concept of Proxy.

A proxy is very much like a symbolic link on an Unix-like OS: a proxy points to a document and will look like a
document from the user point of view:

® the proxy will have the same meta-data as the target document,
® the proxy will hold the same files as the target documents (since file is a special kind of meta-data).

A proxy can point to a live document or to a version (check in archived version).
Proxies are used to be able to see the same document from several places without to duplicate any data.

The initial use case for proxies in Nuxeo DM is local publishing: when you are happy with a document (and
eventually successfully completed a review workflow), you want to create a version for this document. This version
will be the one validated and the live document stays in the workspace where you created it. Then you may want to
give access to this valid document to several people. For that, you can publish the document into one or several

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 32

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

sections: this means creating proxies pointing to the validated version.
Depending on their rights, people that can not read the document from the workspace (because they can not access
it) may be able to see it from one or several sections (that may even be public).

Consultation Filling plan Elaboration Filling plan

r - = = _—___Il'______ __I

|| My Workspace |

Section 1 | | / -\\ |

| | Doc
Doc I (v2) [~1Live document I
—I—-_________-_-l =
| || Doc |
| | (vl)| wversion |
validated

v

| Section 2

Doc
| proxy| (v1)

The second use cases for proxies is multi-filling.

If a proxy can not hold meta-data, it can hold security descriptors (ACP/ACL). So a user may be able to see one
proxy and not an other.

Event systems
When the Nuxeo Repository performs an operation, an event will be raised before and after.

Events raised by the Repository are:

aboutToCreate / emptyDocumentModelCreated / documentCreated
documentlmported

aboutToRemove / documentRemoved

aboutToRemoveVersion / versionRemoved
beforeDocumentModification / documentModified
beforeDocumentSecurityModification / documentSecurityUpdated
documentLocked / documentUnlocked

aboutToCopy / documentCreatedByCopy / documentDuplicated
aboutToMove / documentMoved

documentPublished / documentProxyPublished / documentProxyUpdated / sectionContentPublished
beforeRestoringDocument / documentRestored

sessionSaved

childrenOrderChanged

aboutToCheckout / documentCheckedOut

incrementBeforeUpdate / aboutToCheckin

These events are forwarded on the Nuxeo Event Bus and can be processed by custom handlers. As for all Events
Handlers inside Nuxeo Platform, these Handlers can be:

® Synchronous: meaning they can alter the processing of the current operation
(ex: change the Document content or mark the transaction for RollBack).
® Synchronous Post-Commit: executed just after the transaction has been committed

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 33

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

(can be used to update some data before the user gets the result).
® Asynchronous: executed asynchronously after the transaction has been committed.

Inside the Nuxeo Repository this event system is used to provide several features:

some fields are automatically computed (creation date, modification date, author, contributors ...),
documents can be automatically versioned,
fulltext extraction is managed by a listener too,

[}
[}
[]
[]
Using the event listener system for these features offer several advantages:

® you can override the listeners to inject your own logic,
® you can deactivate the listeners if you don't need the processing,
® you can add your own listeners to provide extract features.

Repository Storage
The Nuxeo Repository consists of several services.

One of them is responsible for actually managing persistence of Documents. This service is pluggable. Nuxeo
Repository can have two different persistence backends:

* Nuxeo VCS.
® Apache Jackrabbit (only up to Nuxeo 5.3.2),

Choosing between the two backends depends on your constraints and requirements, but from the application point
of view it is transparent:

® The API remains the same,
® Documents are the same.

The only impact is that VCS has additional features that are not supported by the Jackrabbit backend.

Nuxeo Visible Content Store (VCS)

Nuxeo VCS was designed to provide a clean SQL Mapping. This means that VCS does a normal mapping between
XSD schemas and the SQL database:

® aschema is mapped as a table,
® asimple field is mapped as a column,
® a complex type is mapped as a foreign key pointing to a table representing the complex type structure.

Using such a mapping provides several advantages:

® a DBA can see the database content and fine tune indexes if needed,
® you can use standard SQL based Bl tools to do reporting,
¢ you can do low level SQL bulk inserts for data migration.

Binary files are never stored in the database, they are stored via BinaryManager on the file system using their
digest. Files are only deleted from the file system by a garbage collector script.

This storage strategy as several advantages:

® storing several times the same file in Nuxeo won't store it several time on disk,
® Binary storage can be easily snapshotted.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 34

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

VCS being now the default Nuxeo backend, it also provides some features that are not available when using the
JCR backend:

® Tag Service,
® Possibility to import a Document with a fixed UUID (useful for application level synchronization).

In addition, VCS provides a native Cluster mode that does not rely on any external clustering system.
This means you can have 2 (or more) Nuxeo servers sharing the same data: you only have to turn on Nuxeo VCS
Cluster mode.

Advantages of VCS:

SQL Storage is usage by DBAs and by Bl reporting tools,
supports Hot Backup,

supports Cluster mode,

supports extra features,

supports low level SQL bulk imports,

VCS scales well with big volumes of Documents.

Drawbacks of VCS:

¢ storage is not JCR compliant.

Apache Jackrabbit Backend

This backend is not present in new Nuxeo versions.

The Jackrabbit backend is compliant with the JSR-170 standard (JCR).

This is the "historical" backend, since first versions of Nuxeo were using this backend by default (it was the only one
available).

Jackrabbit provides a storage abstraction layer and can be configured:

® to store everything on the file system (meta-data + files),
® to store everything in a SQL DataBase (meta-data + files),
® to store meta-data in the SQL DataBase and store files on the filesystem (recommended solution).

Advantages of this backend:

® jtis JSR-170 compliant so you can use any compliant browser to access your Nuxeo Documents, even
without Nuxeo code,
® it can run on a pure filesystem (not recommended for production).

Drawbacks of this backend:

® SQL storage is cryptic (Database stores serialized java objects),
® JackRabbit uses a Lucene index on filesystem (so clustering and hot-backup are complicated),
® doing reporting on JackRabbit data is complex.

Advanced features

Lazy Loading and binary files streaming

In Java API, a Nuxeo Document is represented as a DocumentModel object.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 35

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Because a Document can be big (lots of fields including several files), a DocumentModel Object could be big:

® big object in memory,
® big object to transfer on the network (in case of remoting),
® big object to fetch from the storage backend.

Furthermore, even when you have very complex documents, you don't need all these data on each screen: in most
screens you just need a few properties (title, version, life-cycle state, author...).

In order to avoid these problems, the Nuxeo DocumentModel supports Lazy-Fetching: a DocumentModel is by
default not fully loaded, only the field defined as prefetch are initially loaded. The DocumentModel is bound to the
Repository Session that was used to read it and it will transparently fetch the missing data, block per block when
needed.

You still have the possibility to disconnect a DocumentModel from the repository (all data will be fetched), but the
default behavior is to have a lightweight Java object that will fetch additional data when needed.

The same kind of mechanism applies to files, with one difference: files are transported via a dedicated streaming
service that is built-in. Because default RMI remoting is not so smart when it comes to transferring big chuck of
binary data, Nuxeo uses a custom streaming for transferring files from and to the Repository.

Transaction management
The Nuxeo Repository uses the notion of Session.

All the modifications to documents are done inside a session and modifications are saved (written in the backend)
only when the session is saved.

In a JTA/JCA aware environment, the Repository Session is bound to a JCA Connector that allows:

¢ the Repository Session to be part of the global JTA transaction,
® the session to be automatically saved when the transaction commits.

This means that in a JTA/JJCA compliant environment you can be sure that the Repository will always be safe and
have the expected transactional behavior. This is important because a single user action could trigger modifications
in several services (update documents in repository, update a workflow process state, create an audit record) and
you want to be sure that either all these modifications are done, or none of them: you don't want to end up in an
inconsistent state.

DocumentModel Adapter
In a lot of cases, Documents are used to represent Business Object: Invoice, Subscription, Contract...

The DocumentModel class will let you design the data structure using schemas, but you may want to add some
business logic to it:

® provide helper methods that compute or update some fields,
® add integrity checks based on business rules,
® add business methods.

For this, Nuxeo Core contains an adapter system that lets you bind a custom Java class to a DocumentModel.
The binding can be made directly against a document type or can be associated to a facet.

By default, Nuxeo EP provides some generic adapters:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 36

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

BlobHolder: lets you read and write Binary files stored in a document,
CommentableDocument: encapsulates Comment Service logic so that you can easily comment a
document,

* MultiViewPicture: provides an abstraction and easy API to manipulate a picture with multiple views,
[}

VCS Architecture

The goals of VCS (Visible Content Store) are to:

store information in standard SQL databases,

use "natural" object mapping to tables,

be fast,

support full-text searches on databases having that capability,

have some flexibility in the storage model to optimize certain cases at configuration time.

The pages below describe the architecture of VCS:

Mapping Nuxeo to nodes and properties
Tables

Examples of SQL generated by VCS
Java data structures and caching
Performance recommendations

Mapping Nuxeo to nodes and properties

The Nuxeo model is mapped internally to a model based on a hierarchy of nodes and properties. This model is
similar to the basic JCR (JSR-170) data model.

Nodes, properties, children

A node represents a complex value having several properties. The properties of a node can be either simple
(scalars, including binaries), or collections of scalars (lists usually). A node can also have children which are other
nodes.

Children

The parent-child information for nodes is stored in the hierarchy table.

In this section

Nodes, properties, children

® Children
® Fragment tables
® Fields mapping
* Security

The normal children of a document are mapped to child nodes of the document node. If a document contains
complex types, they are also mapped to child nodes of the document mode. There are therefore two kinds of
children: child documents and complex types. They have to be quickly distinguished in order to:

¢ find all child documents and only them,
* find all complex properties of a document and only them,
® resolve name collisions.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 37

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

To distinguish the two, the hierarchy table has a column holding a isproperty flag to decide if it's a complex
property or not.

Fragment tables

A fragment table is a table holding information corresponding to the scalar properties of one schema (simple
fragment), or a table corresponding to one multi-valued property of one schema (collection fragment).

For a simple fragment, each of the table's columns correspond to a simple property of the represented schema. One
row corresponds to one document (or one instance of a complex type) using that schema.

For a collection fragment, the set of values for the multi-valued property is represented using as many rows as
needed. An additional pos column provides ordering of the values.

A node is the set of fragments corresponding to the schemas of that node.
Fields mapping

Nuxeo fields are mapped to properties or to child nodes:

® asimple type (scalar or array of scalars) is mapped to a property (simple or collection) of the document node,
® a complex type is mapped to a child node of the document node. There are two kinds of complex types to
consider:
® lists of complex types are mapped to an ordered list of complex property children,
® non-list complex types are mapped to a node whose node type corresponds to the internal schema of
the complex type.

Security

Security information is stored as an ACL which is a collection of simple ACEs holding basic rights information. This
collection is stored in a dedicated table in a similar way to lists of scalars, except that the value is split over several
column to represent the rich ACE values.

Related pages:

VCS Architecture

Mapping Nuxeo to nodes and properties

Tables

Examples of SQL generated by VCS

Java data structures and caching

Performance recommendations

Nuxeo clustering configuration

Tables

Fragment tables

Each node has a unique identifier which is a UUID randomly generated by VCS. This random generation has the
advantage that different cluster nodes don't have to coordinate with each other to create ids.

All the fragments making up a given node use the node id in their id column.

For clarity in the rest of this document simple integers are used, but Nuxeo actually uses UUIDs, like 56e42c3f-db

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 38

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/ADMINDOC/Nuxeo+clustering+configuration

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

99-4b18-83ec-601e0653£906 for example.

Hierarchy table

There are two kinds of nodes: filed ones (those who have a location in the containment hierarchy), and unfiled ones
(version frozen nodes, and some other documents like tags).

Each node has a row in the main hierarchy table defining its containment information if it is filed, or just holding its
name if it is unfiled. The same tables holds ordering information for ordered children.

Table hierarchy :

id parentid pos name

1 m

1234 1 workspace
5678 1234 mydoc

In this section

® Fragment tables

Hierarchy table

Type information

Simple fragment tables
Collection fragment tables
Files and binaries
Relations

Versioning

Proxies

Locking

Securit
Miscellaneous values

Fulltext

® Other system tables

® Repositories

¢ Clustering
® Path optimizations
[]

ACL optimizations

Note that:

® the id column is used as a FOREIGN KEY reference with ON DELETE CASCADE from all other fragment
tables that refer to it,

® the pos is NULL for non-ordered children,

® the parentid and pos are NULL for unfiled nodes,

¢ the name is an empty string for the hierarchy's root.

For performance reasons (denormalization) this table has actually more columns; they are detailed below.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 39

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Type information
The node types are accessed from the main hierarchy table.

When retrieving a node by its id the primarytype and mixintypes are consulted. According to their values a set
of applicable fragments is deduced, to give a full information of all the fragment tables that apply to this node.

Table hierarchy (continued):

id coo isproperty primarytype mixintypes 000
1 FALSE Root

1234 FALSE Bar

5678 FALSE MyType [Facet1,Facet2]

The isproperty column holds a boolean that distinguishes normal children from complex properties,

The mixintypes stores a set of mixins (called Facets in the high-level documentation). For databases that support
arrays (PostgreSQL), they are stored as an array; for other databases, they are stored as a |-separated string with
initial and final | terminators (in order to allow efficient LIKE-based matching) — for the example row 5678 above
the mixins would be stored as the string | Facetl |Facet2].

Simple fragment tables

Each Nuxeo schema corresponds to one table. The table's columns are all the single-valued properties of the
corresponding schema. Multi-valued properties are stored in a separate table each.

A "myschema" fragment (corresponding to a Nuxeo schema with the same name) will have the following table:
Table myschema :

id title description created

5678 Mickey The Mouse 2008-08-01 12:56:15.000

A consequence is that to retrieve the content of a node, a SELECT will have to be done in each of the tables
corresponding to the node type and all its inherited node types. However lazy retrieval of a node's content means
that in many cases only a subset of these tables will be needed.

Collection fragment tables

A multi-valued property is represented as data from a separate array table holding the values and their order. For
instance, the property "my:subjects" of the schema "myschema" with prefix "my" will be stored in the following table:

Table my_subjects :

id pos item

5678 0 USA

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 40

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

5678 1 CTU

Files and binaries

The blob abstraction in Nuxeo is treated by the storage as any other schema, "content", except that one of the
columns hold a "binary" value. This binary value corresponds indirectly to the content of the file. Because the
content schema is used as a complex property, there are two entries in the hierarchy table for each document.

Table hierarchy :

id parentid name isproperty primarytype 000
4061 5678 myreport FALSE File

4062 5678 test FALSE File

4063 5678 test2 FALSE File

8501 4061 content TRUE content

8502 4062 content TRUE content

8503 4063 content TRUE content

Table content :

id name mime-type encoding data length digest
8501 report.pdf application/pd ebca0d868ef 344256
f 3
8502 test.txt text/plain ISO-8859-1 5f3b55a834a 541
0
8503 test_copy.txt text/plain ISO-8859-1 5f3b55a834a 541
0
Table file :
id filename
4061 report.pdf
4062 test.ixt
4063 test_copy.txt

The filename is also stored in a separate £ile table just because the current Nuxeo schemas are split that way (the

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 41

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

filename is a property of the document, but the content is a child complex property). The filename of a blob is also
stored in the name column of the content table.

The data column of the content table refers to a binary type. All binary storage is done through the BinaryMana
ger interface of Nuxeo.

The default implementation (DefaultBinaryManager) stores binaries on the server filesystem according to the
value stored in the data column, which is computed as a cryptographic hash of the binary in order to check for
uniqueness and share identical binaries (hashes are actually longer than shown here). On the server filesystem, a
binary is stored in a set of multi-level directories based on the has, to spread storage. For instance the binary with
the hash c38fcf32fl6edfeal74c2labb4c5£d07 will be stored in a file with path data/c3/8£f/c38fcf32fl6e
4feal074c2labb4c5£d07 under the binaries root.

Relations

Some internal relations are stored using VCS. By default they are the relations that correspond to tags applied on
documents, although specific applications could add new ones. Note that most user-visible relations are still stored
using the Jena engine in different tables.

Table relation :

id source sourceUri target targetUri targetString
1843 5670 5700
1844 5670 "some text"

The source and target columns hold document ids (keyed by the hierarchy table). The relation object itself is
a document, so its id is present in the hierarchy table as well, with the primarytype "Relation" or a subtype of it.

In the case of tags, the relation document has type "Tagging", its source is the document being tagged, and its
target has type "Tag" (a type with a schema "tag" that contains a field "label" which is the actual tag).

Versioning

You may want to read background information about Nuxeo versioning first.

Versioning uses identifiers for several concepts:

* Live node id: the identifier of a node that may be subject to versioning.

® Version id: the identifier of the frozen node copy that is created when a version was snapshotted, often just
called a "version".

¢ versionable id: the identifier of the original live node of a version, but which keeps its meaning even after the
live node may be deleted. Several frozen version nodes may come from the same live node, and therefore
have the same versionable id, which is why it is also called also the version series id.

Version nodes don't have a parent (they are unfiled), but have more meta-information (versionable id, various
information) than live nodes. Live nodes hold information about the version they are derived from (base version id).

Table hierarchy (continued):

id coo isversion ischeckedi baseversio majorversi minorversi
n nid on on

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 42

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

5675 TRUE 6120 1 0

5678 FALSE 6143 1 1

5710 FALSE

6120 TRUE 1 0

6121 TRUE 1 1

6143 TRUE 4 3
Note that:

® this information is inlined in the hierarchy table for performance reasons,
® the baseversionid represents the version from which a checked out or checked in document originates.
For a new document that has never been checked in it is NULL.

Table versions :

id versionabl created label descriptio islatest islatestma
eid n jor

6120 5675 2007-02-27 1.0 FALSE TRUE
12:30:00.000

6121 5675 2007-02-28 2.1 TRUE FALSE
03:45:05.000

6143 5678 2008-01-15 4.3 TRUE FALSE
08:13:47.000

Note that:

® the versionableid is the id of the versionable node (which may not exist anymore, which means it's not a
FOREIGN KEY reference), and is common to a set of versions for the same node, it is used as a version

series id.
® islatest is true for the last version created,
® islatestmajor is true for the last major version created, a major version being a version whose minor

version number is 0,
¢ the label contains a concatenation of the major and minor version numbers for users's benefit.

Proxies

Proxies are a Nuxeo feature, expressed as a node type holding only a reference to a frozen node and a
convenience reference to the versionable node of that frozen node.

Proxies by themselves don't have additional content-related schema, but still have security, locking, etc. These facts
are part of the node type inheritance, but the proxy node type table by itself is a normal node type table.

Table proxies :

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 43

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

id targetid versionableid
9944 6120 5675
Note that:

®* the targetidis the id of a version node and is a FOREIGN KEY reference to hierarchy. id.
® the versionableid is duplicated here for performance reasons, although it could be retrieved from the
target using a JOIN.

Locking

The locks are held in a table containing the lock owner and a timestamp of the lock creation time.

Table locks :
id owner created
5670 Administrator 2008-08-20 12:30:00.000
5678 cobrian 2008-08-20 12:30:05.000
9944 jbauer 2008-08-21 14:21:13.488

When a document is unlocked, the corresponding line is deleted.

Another important feature of the 1ocks table is that the id column is not a foreign key to hierarchy.id. Thisis
necessary in order to isolate the locking subsystem from writing transactions on the main data, to have atomic locks.

Security

The Nuxeo security model is based on the following:

® asingle ACP is placed on a (document) node,

® the ACP contains an ordered list of named ACLs, each ACL being an ordered list of individual grants or
denies of permissions,

¢ the security information on a node (materialized by the ACP) also contains local group information (which can
emulate owners).

Table acls :
id pos name grant permission user group
5678 0 local true WriteProperti cobrian
es
5678 1 local false ReadProperti Reviewer
es

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 44

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

5678 2 workflow false ReadProperti kbauer
es

This table is slightly denormalized (names with identical values follow each other by pos ordering), but this is to
minimize the number of JOINSs to get all ACLs for a document. Also one cannot have a named ACL with an empty
list of ACEs in it, but this is not a problem given the semantics of ACLs.

The user column is separated from the group column because they semantically belong to different namespaces.
However for now in Nuxeo groups and users are all mixed in the user column, and the group column is kept
empty.

Miscellaneous values
The lifecycle information (lifecycle policy and lifecycle state) is stored in a dedicated table.

The dirty information (a flag that describes whether the document has been changed since its last versioning) is
stored in the same table for convenience.

Two Nuxeo "system properties" of documents in use by the workflow are also available.

Table misc :

id lifecyclepol 1lifecyclesta dirty wfinprogress wfincoption
icy te

5670 default draft FALSE

5678 default current TRUE

9944 publishing pending TRUE

Fulltext

The fulltext indexing table holds information about the fulltext extracted from a document, and is used when fulltext
queries are made. The structure of this table depends a lot on the underlying SQL database used, because each
database has its own way of doing fulltext indexing. The basic structure is as follow:

Table fulltext :

id jobid fulltext simpletext binarytext
5678 5678 Mickey Mouse USA Mickey Mouse USA reporttitle ...
CTU report pdf CTU report pdf
reporttitle ...

The simpletext column holds text extracted from the string properties of the document configured for indexing.
The binarytext column holds text extracted from the blob properties of the document configured for indexing. The
fulltext column is the concatenation of the two and is the one usually indexed as fulltext by the database. A
database trigger updates fulltext as soon as simpletext or binarytext is changed.

The jobid column holds the document identifier of the document being indexed. Once the asynchronous job

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 45

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

complete, all the rows that have a jobid matching the document id are filled with the computed fulltext information.
This ensures in most cases that the fulltext information is well propagated to all copies of the documents.

Some databases can directly index several columns at a time, in which case the fulltext column doesn't exist,
there is no trigger, and the two simpletext and binarytext columns are indexed together.

The above three columns show the data stored and indexed for the default fulltext index, but Nuxeo allows any
number of additional indexes to be used (indexing a separate set of properties). In this case additional columns are
present, suffixed by the index name; for instance for index "main" you would find the additional columns:

Table fulltext (continued):

id 500 fulltext_main simpletext_main binarytext_main

5678 bla bla

Other system tables
Repositories

This table hold the root id for each repository. Usually Nuxeo has only one repository per database, which is named
"default".

Table repositories:

id name

1 default

Note that the id column is a FOREIGN KEY to hierarchy.id.
Clustering

When configured for cluster mode, two additional tables are used to store cluster node information and cluster
invalidations.

A new row is created automatically in the cluster nodes table when a new cluster node connects to the database. It
is automatically removed when the cluster node shuts down.

Table cluster_nodes :

nodeid created

71 2008-08-01 12:31:04.580

78 2008-08-01 12:34:51.663

83 2008-08-01 12:35:27.184
Note that:

* the nodeid is assigned by the database itself, its form depends on the database,
® the created date is not used by Nuxeo but is useful for diagnostics.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 46

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

The cluster invalidations are inserted when a transaction commits, the invalidation rows are duplicated for all cluster
node ids that are not the current cluster node. Rows are removed as soon as a cluster node checks for its own
invalidations, usually at the beginning of a transaction.

Table cluster_invals :

nodeid id fragments kind

78 5670 hierarchy, dublincore, 1
misc

78 5678 dublincore 1

83 5670 hierarchy, dublincore, 1
misc

83 5678 dublincore 1

Note that:

® idisanodeidbutis nota FOREIGN KEY to hierarchy.id for speed reasons,

® fragments is the list of fragments to invalidate; it is a space-separated string, or an array of strings for
databases that support arrays,

® kindis 1 for modification invalidations, or 2 for deletion invalidations.

Path optimizations
For databases that support it, some path optimizations allow faster computation of the NXQL STARTSWITH operator.

When path optimizations are enabled (this is the default on supported databases), an addition table stores the
descendants of every document. This table is updated through triggers when documents are added, deleted or
moved.

Table descendants

id descendantid
1 1234
1 5678
1234 5678

Note that descendantid is a FOREIGN KEY to hierarchy.id.

Another more efficient optimization is used instead for PostgreSQL (see NXP-5390). For this optimization, an ances
tors table stores all the ancestors as an array in a single cell. This table is also updated through triggers:

Table ancestors :

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 47

http://doc.nuxeo.com/x/GATF
http://jira.nuxeo.com/browse/NXP-5390

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

id ancestors
1234 [1]
5678 [1, 1234]

The ancestors column contains the array of ordered ancestors of each document (not complex properties), with
the root at the beginning of the array and the direct parent at the end.

ACL optimizations

For databases that support it, ACL optimizations allow faster security checks than the NX ACCESS_ALLOWED stored
procedure used in standard.

The hierarchy read_acl table stores information about the complete ACL that applies to a document.
Table hierarchy_read_acl :

id acl_id

5678 bc61ba9c8dbf034468ac361ae068912b
The acl_id is the unique identifier for the complete read ACL (merged with ancestors) for this document. It
references the id column in the read_acls table, but not using a FOREIGN KEY for speed reasons.

The read_acls table stores all the possibles ACLs and their unique id.

Table aclr :
acl_id acl
bc61ba9c8dbf034468ac361ae068912b -Reviewer,-kbauer,Administrator,administrators

The unique ACL id is computed through a hash to simplify unicity checks.

When a security check has to be done, the user and all its groups are passed to a stored procedure (usually NX GE
T READ ACLS_FOR), and the resulting values are JOINed to the hierarchy read_acl table to limit document
ids to match.

The NX_GET READ ACLS FOR stored procedure has to find all ACLs for a given user, and the results of that can be
cached in the read_acls_cache table. This cache is invalidated as soon as security on a document changes.

Table aclr_user_map

users_id acl_id
f4bb42d8 1
f4bb42d8 1234

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 48

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

f4bb42d8 5678
c5ad3c99 1
c5ad3c99 1234

Table aclr_user :

user_id users
f4bb42d8 Administrator,administrators
c5ad3c99 kbauer,members

Note:

® f4bb42d8 is the MD5 hash for "Administrator,administrators", c5ad3c99 is the MD5 hash for
"kbauer,members".
® ahash is used to make sure this column has a limited size.

An additional table, aclr modified, is used to temporarily log document ids where ACLs are modified.

Table aclr_modified :

hierarchy_ id is_new

5678 FALSE

5690 TRUE
Note that:

® idis areference to hierarchy.id but does not use a FOREIGN KEY for speed reasons,
®* is new is false for an ACL modification (which has impact on the document's children), and true for a new
document creation (where the merged ACL has to be computed).

This table is filled while a set of ACL modifications are in progress, and when the Nuxeo session is saved the stored
procedure NX UPDATE READ_ ACLS is called to recompute what's needed according to hierarchy modified a
cl, which is then emptied.

Since 5.4.2 for PostgreSQL and since 5.5 for Oracle and MS SQL Server there is a new enhancement to be more
efficient in read/write concurrency. Instead of flushing the list of read ACL per user when a new ACL is added, the
list is updated. This is done using database triggers. Note that some tables have been renamed and prefixed by
aclr_ (for ACL Read). Following is a big picture of the trigger processing:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 49

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Nuxeo Core API
modify hierarchy and acls tables

AN

@® acis @ hierarchy

hierarchy_id id
ace
nx_trig_acls modified() nx_trig_hierarchy modified()
log document ids with udpated acls log new or updated document ids

@ aclr_modified

Nuxeo Core session.save() H

hierarchy_id

nx_update_read_acls()
compute the read acls for the modified document,

@ hierarchy_read_acl

hierarchy_id
acl_id

Y
rix_trig_hierarchy_read_acl_modified() j

Update aclr table

A4

@ acrr

acl_id
acl like jsmith.administrators,-Everyone

[Nuxeo Core, nx_get_read_acls_for(users) H
A
[

Update aclr_user_map

nx_trig_hierarchy_modified() j

@ aclr_user_map @ acir_user

acl_id user_id
user_id users

Related pages

Nuxeo clustering configuration

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/ADMINDOC/Nuxeo+clustering+configuration

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Performance recommendations

Tables

Mapping Nuxeo to nodes and properties

VCS Architecture

Examples of SQL generated by VCS

Java data structures and caching

Examples of SQL generated by VCS

Request all documents as Administrator

...

In this section

® Request all documents as Administrator
® | ist children of a folder order by title
® Select on a complex type

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 51

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

SQL (PostgreSQL dialect)

-- 1/ Get the result list (only ids)
SELECT _Cl1l FROM (

SELECT hierarchy.id AS _C1

FROM hierarchy

WHERE ((hierarchy.primarytype IN ($1, ... $58)))
UNION ALL

SELECT _H.id AS _Cl FROM hierarchy _H

JOIN proxies ON _H.id = proxies.id

JOIN hierarchy ON proxies.targetid = hierarchy.id

WHERE ((hierarchy.primarytype IN ($59, ... $116)))) AS _T
LIMIT 201 OFFSET O

-- 2/ load hierarchy fragment for the 12 documents

SELECT id, parentid, pos, name, isproperty, primarytype, ...
FROM hierarchy

WHERE id IN ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10, $11, $12)

-- 3/ load prefetch dublincore fragment

SELECT id, creator, source,nature, created, description, ...
FROM dublincore

WHERE id IN ($1, $2,$3, $4, $5, $6, $7, $8, $9, $10, $11, $12)

-- 4/ load dublincore multi valued contributors fields

SELECT id, item FROM dc_contributors

WHERE id IN ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10, $11, $12)
ORDER BY id, pos

-- 5/ load other fragments dc_subject, misc

-- 6/ load ACL

SELECT id, name, grant, permission, user,group

FROM acls

WHERE id IN ($1, $2, $3, $4, $5, $6, $7, $8, $9,810, $11, $12)
ORDER BY id, pos

The main request use a "UNION ALL" to include proxies in the results. If you don't need the proxies you can add a "
AND ecm:isProxy = 0" clause to reduce the size of the query.

Note that requests to load fragments (steps 2 to 6) are not needed if the rows are already in the cache.

Note that only prefetched properties are loaded. If you need to access a property that is not prefetched for all your
documents, you will have an extra database access for each documents (lazy loading).

There is LIMIT because Page Provider for navigation use paging by default. If you have more than 200 documents
in a folder you will not see the total size of results. See https://jira.nuxeo.com/browse/NXP-9494 for more
information.

List children of a folder order by title

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 52

http://doc.nuxeo.com/x/GATF
http://ecmisProxy
https://jira.nuxeo.com/browse/NXP-9494

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

NXQL
SELECT * FROM Document
WHERE ecm:parentId = ? AND
ecm: isCheckedInVersion = 0 AND
ecm:mixinType != 'HiddenInNavigation' AND
ecm:currentLifeCycleState != 'deleted'
-- defaultSortColumn=dc:title
sSQL

SELECT _Cl, _C2 FROM (
SELECT hierarchy.id AS _Cl1l, _Fl.title AS _C2
FROM hierarchy

LEFT JOIN dublincore _F1 ON hierarchy.id = _F1l.id
LEFT JOIN misc _F2 ON hierarchy.id = _F2.id
JOIN hierarchy read_acl _RACL ON hierarchy.id = _RACL.id

WHERE ((hierarchy.primarytype IN ($1, ... , $33)) AND
(hierarchy.parentid = $34) AND
(hierarchy.isversion IS NULL) AND
(_F2.lifecyclestate <> $35)) AND
_RACL.acl_id IN (SELECT * FROM nx_get_read_acls_for($36))
UNION ALL
-- same select for proxies
ORDER BY _C2
LIMIT 201 OFFSET O

Select on a complex type

NXQL

SELECT * FROM Document WHERE files/*/file/name LIKE '%.jpg’

SQL
SELECT DISTINCT _Cl FROM (
SELECT hierarchy.id AS _C1
FROM hierarchy
LEFT JOIN hierarchy _H1l ON hierarchy.id = _Hl.parentid AND _Hl.name = §$1
LEFT JOIN hierarchy _H2 ON _Hl.id = _H2.parentid AND _H2.name = §$2
LEFT JOIN content _Fl ON _H2.id = _Fl.id

WHERE ((hierarchy.primarytype IN ($3, ... $60)) AND
(_Fl.name LIKE $61))
UNION ALL
-- same select for proxies AS _T
LIMIT 201 OFFSET O
-- parameters: $1 = 'files', $2 = 'file' .. $61 = '%.jpg’

Copyright © 2010-2013 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

53

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Related pages

VCS Architecture (Nuxeo Enterprise Platform (EP))

Directories and Vocabularies (Nuxeo Enterprise Platform (EP))

Mapping Nuxeo to nodes and properties (Nuxeo Enterprise Platform (EP))

Tables (Nuxeo Enterprise Platform (EP))

Examples of SQL generated by VCS (Nuxeo Enterprise Platform (EP))

Java data structures and caching (Nuxeo Enterprise Platform (EP))

Performance recommendations (Nuxeo Enterprise Platform (EP))

Nuxeo clustering configuration (Nuxeo Installation and Administration)

Java data structures and caching

Here is a list of Java objects that hold data:

®* Row: It holds a single database row using a map (or a list of value for a multi-valued properties).

®* Fragment: It is a Row with a state, the original data are kept to pinpoint dirty fields that will need to be
synchronized with the database. There are two kind of fragments: SimpleFragment to hold single database
row and CollectionFragment to hold multi-valued fields. Fragment and Rows manipulates non-typed data
(Serializable).

* Node: It holds a map of fragments and it gives access to typed property.

® Selection: It holds a list of IDs for a node like the list of children, versions or proxies.

* DocumentModel: The high level document representation, it uses a Node and has knowledge about rights,
proxies, versions.

When a session is manipulating documents, the underlying Row objects are loaded, updated, deleted using a
Mapper.

When a session is saved, the Mapper send SQL DML instructions in batch to minimize database round trip.
The main database caching is done at the Row level.

When performing a NXQL query, the result list of IDs is not cached. Only the database rows needed to represent the
documents are cached.

After a commit the session sends cache invalidation to other sessions (or to other Nuxeo instances when in cluster
mode). Before starting a new transaction the session processes the invalidation to update its cache.

The default cache implementation uses a cache per session. The cache is done with Java SoftReference map. This
means that cache values can be garbage collected on memory pressure. The cache size depends on the size of the
JVM heap and on the memory pressure.

The cache implementation is pluggable so it is possible to try other strategies like having an common cache shared
by all sessions. There is a beta implementation here: https://github.com/bdelbosc/nuxeo-core-ehcache-mapper/.

The Selection (list of children, proxies or versions) are also cached using SoftReference at the session level.

Both Row and Selection caches expose metrics so it is possible to get the cache hit ratio.

Related pages
VCS Architecture

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 54

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/ADMINDOC/Nuxeo+clustering+configuration
https://github.com/bdelbosc/nuxeo-core-ehcache-mapper/

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Mapping Nuxeo to nodes and properties

Tables

Examples of SQL generated by VCS

Java data structures and caching

Performance recommendations

Nuxeo clustering configuration

Performance recommendations

® Check that common properties are set as prefetched.

® |f you don't need proxies add a "AND ecm:isProxy = 0" clause.

¢ |f you are doing NXQL query that involve custom schema you may need to add custom index to make the
request efficient.

® Use groups to manage ACL. Adding a user to a group is free, but adding a user in an ACL at the root level
has a cost because optimized read ACLs need to be recomputed.

® Check the network latency between the application and the database.

® Monitor everything, JVM, GC, VCS cache hit ratio, database, system.

Related pages

Monitoring and maintenance (Nuxeo Installation and Administration)

Remote monitoring through a SSH tunnel (Nuxeo Installation and Administration)

Nuxeo clustering configuration (Nuxeo Installation and Administration)

Performance recommendations (Nuxeo Enterprise Platform (EP))

Tables (Nuxeo Enterprise Platform (EP))

Mapping Nuxeo to nodes and properties (Nuxeo Enterprise Platform (EP))

VCS Architecture (Nuxeo Enterprise Platform (EP))

Examples of SQL generated by VCS (Nuxeo Enterprise Platform (EP))

Java data structures and caching (Nuxeo Enterprise Platform (EP))

Search results optimizations (Nuxeo Enterprise Platform (EP))

Platform features quick overview

This page presents a quick overview of the main features available in Nuxeo EP:

Document Management

Indexing

Renditions, preview and annotations

Process Management and content automation
eMails

Digital Asset Management
Portal and Web views

It is not supposed to be exhaustive, the main target is to help you see what Nuxeo EP can do for you.

Document Management

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 55

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/ADMINDOC/Nuxeo+clustering+configuration
http://doc.nuxeo.com/x/gBDF
http://doc.nuxeo.com/display/ADMINDOC/Monitoring+and+maintenance
http://doc.nuxeo.com/display/ADMINDOC/Remote+monitoring+through+a+SSH+tunnel
http://doc.nuxeo.com/display/ADMINDOC/Nuxeo+clustering+configuration

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Document Management features are the core of Nuxeo EP.

Basically, using the Nuxeo Repository you can define your own document types. For this, you can define XSD
schemas that will define the structure of your documents:

® you can share schemas between document types, to have common blocks of meta-data,
® you can use inheritance between document types, to create a hierarchy.

The fields in schemas (and then in documents) can be:

® simple types (String, Date, Integer, Boolean, Double ...),
® |[ist of simple types (multi-valued properties),
® complex types:

¢ file (binary stream, filename, mime-type, size),

® custom complex types (like an postal address).

The Nuxeo Repository can manage versioning on documents (including numbering policies), manage customized ID
generation. It can also manage security on documents (see the page on Repository overview for more details).

Nuxeo EP lets you associate documents with relations and tags. It also provides Ul building blocks to help you use
the documents inside the repository:

* The form (Layout and Widget) system enables you to easily define View/Edit/Create screens,
® Navigation can be based on several physical filing plans:

® physical plan,

®* meta-data (virtual navigation),

® tags,

Indexing

All documents stored in the Nuxeo Repository are indexed. Indexing is configurable and by default manages:

® all meta-data keyword indexing,
¢ fulltext indexing on all extracted from meta-data fields and files.

All standard files types are fulltext indexed. Fulltext extraction is pluggable: you can add a custom extractor if you
have very specific file types.

The Repository provides a query system to let you:

® search on meta-data,
® sgsearch on fulltext.

Nuxeo Search can be done in NXQL (SQL like) or CMISQL.

Search results take security into account: a user can not find a document that he can not access.

Renditions, preview and annotations

Nuxeo EP includes a conversion service that can be used to convert binary files to text, html, pdf, etc. This Convers
ionService is pluggable and you can define your own conversion plugins and your own conversion chains.

Nuxeo EP also includes a preview service that provides HTML preview Ul coupled with an annotation service. This
lets user read and annotate a MSOffice file without needing to run MSOffice locally. The Annotation server is based
on the Annotea W3C standard and provides annotation capabilities for both text and images.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 56

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/GLOS/NXQL

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Process Management and content automation

Documents are associated with a lifecycle. The lifecycle defines the possible states of a document and the
associated transitions. Many simple review process can be managed with a simple lifecycle and some custom
listeners (java code or scripting).

You can also use Content Automation to simply define operation chains triggered by events using Nuxeo Studio (no
need to code).

Of course, if you need real Business Process management, Nuxeo EP integrates the j[BPM engine and a set of
generic handlers that can be used to manipulate documents from within the business process context.

eMails

Nuxeo provides features to:

® send a document via email,

® manage notifications via email,

fetch eMails from a mailbox and transform them into Nuxeo Documents,
® inject eMails in Nuxeo Repository.

Digital Asset Management

Nuxeo EP provides several features to deal with pictures:

® extract or set meta-data associated with picture formats (EXIF, IPTC ...),

resize and rotate images,

convert images between formats,

generate thumbnails and picture book views,

provide browsing and tiling web Ul (allows to view and zoom on a very large image even in a web browser).

For video assets, Nuxeo EP provides services for:

® video conversion,
® video thumbnails extraction,
® integration with a streaming server (Darwin).

Portal and Web views

The main target of Nuxeo EP is to provide tools to create and manage content. But Nuxeo EP also provides tools to
generate Web views on your content.

For that, WebEngine provides a simple template-based rendering system that is completely integrated with Nuxeo
documents and services.

With WebEngine, it's easy to provide a custom web view on top of a document, workspace, folder, ...
Nuxeo EP also provides pre-built WebEngine module for WebSites, Blogs and Wikis.
If you want to aggregate content or small web applications you can also use Nuxeo as a portal.

For that Nuxeo EP integrates:

* a UWA widgets container,
® acomplete OpenSocial Server (OAuth, Google Gadgets, Social APIs...).

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 57

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/Studio/Nuxeo+Studio+Documentation+Center

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Component model overview

In this section:

® Nuxeo Bundles
Components and Services
® Extension Points
® Declare an extension point
® Contribute to an Extension Point
® Extension Points everywhere

® Packaging and deployment

Nuxeo Bundles
Inside Nuxeo EP, software parts are packaged as Bundles.

A Nuxeo Bundle is a jar archive containing:

an OSGl-based MANIFEST file,
Java classes,

XML Components,

Resources,

a deployment descriptor.

The MANIFEST file is used to:

® define an id for the bundle,
* define the dependencies of the bundles (ie: other bundles that should be present for this bundle to run),
® [ist XML components that are part of the bundle.

Here is an example of a MANIFEST file:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: NXCoreConvert

Bundle-SymbolicName: org.nuxeo.ecm.core.convert
Bundle-Localization: plugin

Require-Bundle: org.nuxeo.ecm.core.api,
org.nuxeo.ecm.core.convert.api

Bundle-Vendor: Nuxeo

Export-package: org.nuxeo.ecm.core.convert.cache,
org.nuxeo.ecm.core.convert.extension,
org.nuxeo.ecm.core.convert.service

Bundle-Category: runtime

Nuxeo-Component: OSGI-INF/convert-service-framework.xml

Here we can see that:

® Bundle is named org.nuxeo.ecm.core.convert
® Bundle depends on 2 other bundles: core.api and convert.api.
® Bundle contains one XML component: convert-service-framework.xml.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Components and Services

The XML components are XML files, usually placed in the 0SGI-INF directory, that are used to declare
configuration to Nuxeo Runtime.

Each XML component has a unique id and can:

declare requirement on other components,
declare a JAVA component implementation,
contain XML contribution,

declare a Java contribution.

A Java Component is a simple Java class that is declared as component via an XML file.

Components usually derive from a base class provided by Nuxeo Runtime and will be available as a singleton via a
simple Nuxeo Runtime call:

Framework.getRuntime () .getComponent (componentName)

Usually, components are not used directly, they are used via a service interface. For that, the XML components can
declare which Service Interfaces are provided by a given component. The component can directly implement the
service interface or can delegate service interface implementation to an other class. Once declared the Service will
be available via a simple Nuxeo Runtime call:

Framework.getService(ServiceInterface.class)

Extension Points

One of the corner stone of the Nuxeo Platform is to provide components and services that can easily be configured
or extended.
For that, we use the Extension Point system from Nuxeo Runtime that is inspired from Equinox (Eclipse platform).

This extension point system allows you to:

® configure the behavior of components (= contribute XML configuration),
¢ extend the behavior of components (= contribute Java code or scripting).

Basically, inside Nuxeo EP, the pattern is always the same:

® Services are provided by Components,
® Components expose Extension Points.

The same extension point system is used all over the platform:

inside Nuxeo Runtime itself,

inside Nuxeo Core (configure and extend Document storage),

inside Nuxeo Service layer (configure and extend ECM services),

inside Ul layer (assemble building blocks, contribute new buttons or views, configure navigation, ...).

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 59

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Each Java Component can declare one or several extension points.

These Extension Points can be used:

® to provide configuration,
® to provide additionnal code (i.e. : plugin system).

So most Nuxeo Services are configurable and pluggable via the underlying component.

—-— — '1
| XP A1 |
L

I[ComponentA [XP A2)

A

Configuration via
XML XML contribution

|

|

I Contribute Java
| | XML |Extension
|

|

I

Declare an extension point
Extension Points are declared via the XML Component that declares the Java Component.

Here is a simple example:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

60

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.core.convert.service.ConversionServicelmpl">
<documentation>
Service to handle conversions
</documentation>
<implementation class="org.nuxeo.ecm.core.convert.service.ConversionServicelmpl"/>*

<service>
<provide interface="org.nuxeo.ecm.core.convert.api.ConversionService"/>*
</service>
<extension-point name="converter">
<documentation>

This extension can be used to register new converters
</documentation>
<object class="org.nuxeo.ecm.core.convert.extension.ConverterDescriptor"/>
</extension-point>
<extension-point name="configuration">
<documentation>
This extension can be used to configure conversion service
</documentation>
<object class="org.nuxeo.ecm.core.convert.extension.GlobalConfigDescriptor"/>
</extension-point>
</component>

What we can read in this XML component is:

® the declaration of a Java Component (via the component tag) with a unique id (into the name attribute),
® this component declares a new service (via the implementation tag)
® the declaration of the ConvertService interface (used to also fetch it) implemented by ConvertServicel
mpl java implementation,
® this service expose 2 extension points:
® one to contribute configuration,
® one to contribute java code (new converter plugins).

Each extension point have his own xml structure descriptor, to specify the xml fragment is waiting for into this
extension point:

® org.nuxeo.ecm.core.convert.extension.ConverterDescriptor
® org.nuxeo.ecm.core.convert.extension.GlobalConfigDescriptor

This description is define directly into these class by annotations. Nuxeo Runtime instanced descriptors and deliver
it to the service each time a new contribution of these extension points is detected.

*Each Nuxeo extension points use this pattern to declare configuration possibilities, service integration,
behavior extension, etc...*

You understand this pattern, you will understand all extension points into Nuxeo. And you can use this infrastructure
to declare your own business services.

Contribute to an Extension Point
XML component can also be used to contribute to extension points.

For that, the XML component needs:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 61

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

® to be referenced in a MANIFEST bundle,
® to specify a target extension point,
® to provide the XML content expected by the target extension point.

Expected XML syntax is defined by the XMap object referenced in the extension point declaration.

Here is an exemple contribution to an extension point:

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.convert.plugins">

<extension
target="org.nuxeo.ecm.core.convert.service.ConversionServicelmpl" point="converter">

<converter name="zip2html"
class="org.nuxeo.ecm.platform.convert.plugins.Zip2HtmIConverter">
<destinationMimeType>text/htmi</destinationMimeType>
<sourceMimeType>application/zip</sourceMimeType>
</converter>

</extension>

</component>

Extension Points everywhere

Nuxeo Platform uses extension Points extensively, to let you extend and configure most of the features provided by
the platform.

You can find all extension Points available in the DM distribution here.

Packaging and deployment
The layered architecture impacts the way we package features in Nuxeo EP.

In order to keep as much deployment options as possible and let you choose what you deploy and where, each
feature (workflow, relations, conversions, preview ...) is packaged in several separated bundles.

Typically, this means that each feature will possibly be composed of:

an API Bundle that contains all interfaces and remotable objects needed to access the provided services;

a Core Bundle that contains the POJO implementation for the components and services;

a Facade Bundle that provides the JEE bindings for the services (JTA, Remoting, JAAS ...);

a Core Contrib Bundle that contains all the direct contributions to the Repository (Document types, listeners,
security policies ...);

¢ client bundles.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 62

http://doc.nuxeo.com/x/GATF
http://explorer.nuxeo.org/nuxeo/site/distribution/Nuxeo%20DM-5.5/listExtensionPoints

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Ul Bundles] [Ul Bundles Views and A ctions for the target Ul framework

APl Bundle | service APIs and DTOs

| Provide JEE integration
Facade Bundle | (Security, Transactions, EJB, Remoting ...)

P0OJO implem entation

Core Bundle (Components, Services)

Contributions to the Repository

e (Docum ent types, lifecycles, listeners ...)

One feature

All the bundles providing the different layers of the same feature are usually associated to the same Maven artifact
group and share the same parent POM file.
This is basically a bundle group for a given feature.

API and connectors

Nuxeo APIs

Nuxeo EP provides several types of API :

Java local API

Java remote API
WebService (JAX-WS) API
REST (JAX-RS) API

AMF (Flash) API

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 63

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Java REST SOAP AMF/Flash
local http I http | http I
or
RMI JAX-RS JAX-WS || GranitDS

\ \ \

Nuxeo Services

Nuxeo Core

Since Nuxeo EP is built using the java language, only the Java local API can be used to extend Nuxeo.

When running in the same JVM as Nuxeo you have access to all Nuxeo API (components and services).

For more information about using Nuxeo internal API, please see the Customization and Development and Extendin
g Nuxeo sections.

All other APIs provide remote access and allow you to call some Nuxeo Services from an external application.
These are typically the APIs you may use to integrate Nuxeo with third party application. For more information about
this topic, please see : Using Nuxeo as a service platform.

Content oriented Protocols
You can also access Nuxeo EP content via a "standard" protocol.

Nuxeo EP currently supports:

* CMIS,
* WebDav,
* Windows Sharepoint Services protocol (only the subset used by MS Office and MS Explorer).

Compared to the APIs, these protocols won't give you access to services but directly to the content.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 64

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

CMIS WebDav WSS

http I http I http I

Chemistry || nuxeo-dav || NUXe0-Wss

Nuxeo Core

Depending on the chosen protocol, your access to Nuxeo Content will be more or less powerful:

* CMIS gives you access to a big subset of the data managed by Nuxeo.
® WebDav and WSS mainly map Nuxeo's content as a file-system (with all the associated limitations).

These protocols may be useful in several use cases:

® Desktop integration,
® To allow a portal or a WCM solution to access Nuxeo's content.

For more information, please see the section dedicated to Repository access.

Connectors

Directories

Inside Nuxeo EP, directories are used to provide a abstraction on all referencial data that can be manipulated inside
the application.

These data can be:

® users,
® groups of users,

® fixed list of values (vocabularies),
® roles,

[}

Basically we try to map all data that can be manipulated like record via directories. For that, directories provide a
simple CRUD API and an abstraction on the actual implementation. This means that the services of the platform do
not have to worry about where and how the data is stored, they just access the API.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 65

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Directory
abstraction
— SQL Directory " SQLDB
access \ 4 e
users -1C N
R || . —
access U LDAP Directory LDAP
Nuxeo Services — 9reips L : \ .
dCcCcess H =
vocabularies A —{ Multi Directory ‘ksgi
A \) LDAP
L access - | - N
ref data] Custom ____» | External
\ Directory) Provider

Directories comes with several implementations:

® SQL Directories that can map SQL tables,
® LDAP Directories that can map a LDAP server,
® Multi-Directory that allow to combine several directories into a single one.

A frequent use case is also to use the directory abstraction to map a given webservice or application that manages
centralized data.
(We provide a connector sample for that.)

Authentication and User management

Authentication and user management is also a typical use case for integration between Nuxeo EP and existing
infrastructures:

® integrating a Single Sign On system,
® integrating an application that manage users profiles,
® integrating an application that manage groups.

As seen above, directories provide part of the solution. But in order to be able to integrate a lot of different
authentication use cases, Nuxeo EP authentication system was designed to be very pluggable.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 66

http://doc.nuxeo.com/x/GATF

nuXxeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Xmi
COorni Ty
LDAP Directory bind LDAP

xmi — authenticate .
mP ol N i —

authenticate ‘\

Nuxeo UserManager
checklUserPasswo

SQL Directory
authentic.

The initial identification can be done at Java level via JAAS or at Http level via a dedicated filter. The filter is
pluggable so that the way of retrieving credentials can be an adapter to the target system. The JAAS login module is
also pluggable so that you can define how the credentials are validated. By default, credentials are validated against
directory that use LDAP, SQL or an external application.

oo | s g

UserManager || Directory || LDAP

fogin
checkUserPassword
authenticate
Choose the right auth Standard JAAS process Select target do Auth
plugin to retrieve Directory against the
(login / password) and backend
push to JAAS Context

Integration via Nuxeo Event system

When you need to integrate some features of an external application into Nuxeo, or want Nuxeo to push data into an
external application, using Nuxeo Event system is usually a good solution.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 67

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

b

Nuxeo Enterprise Platform

External External External
Application Application Application
call Notify
Synchronous Asynchronous JMS
Listener Listener Bridge Nuxeo Event Bus

Ul frameworks

Nuxeo EP proposes different technologies for the client side of the application.

The choice of one technology vs. the other depends on both the project's stakes and its context.

The different technologies available are:

JSF/Seam
WebEngine
Flex client
GWT Client
Shell Client

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

68

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

General public

Dedicated RIA Application

Content apps &

A
s

GWT
Flex/Air

nuxeo - Enterprise Platform

WebEngine

NXShell

Administration Business Application

JSF/Seam

The Nuxeo EP default web Ul is based on JSF (a Java EE standard) for the Ul component model, and Seam for the
navigation and context management.

Technologies:

® Sun JSF 1.2,

® Facelets,

® JBoss RichFaces 3.3.1.GA,
® JBoss Seam 2.

Key points:
Nuxeo EP's JSF interface is fully modular and very easy to customize:

® integrated theme manager,
® XML configuration for buttons, tabs, actions, etc.
* Form and Widget layout engine.

Typical use case:
® Business application,
®* Document management back-office.

WebEngine

JSF technology is not best suited to create websites with content managed by Nuxeo EP, due to JSF's stateful
model, full abstraction of the HTML/JS code, etc. Thus, Nuxeo has developed a simple yet powerful rendering
engine based on Freemarker and JAX-RS: Nuxeo WebEngine.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 69

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Technologies:

* JAX-RS,
® Freemarker,
® Java scripting (Groovy or other).

Key points:
Nuxeo WebEngine enables web developers to easily create a customized web interface on top of Nuxeo EP:

¢ Simple template engine,

® Direct access to HTML,

® Java scripting support,

* Lightweight development environment based on Jetty.

Typical use case:

Nuxeo WebEngine is designed to expose Nuxeo EP managed content in a web experience. In many cases, the JSF
interface is used for the back-office management while Nuxeo WebEngine provides the front office interface.
Furthermore, with the JAX-RS support, Nuxeo WebEngine allows rapid creation of REST applications on top of
Nuxeo EP.

Flex client
Nuxeo EP provides a Flex’/AMF connector allowing an Air/Flex client to connect.

Technologies:

® Air/Flex,
* AMF remoting integrated via GraniteDS.

Key points:
The Flex technology can be easily deployed, as the equipment rate in flash VM is quite high. The Flash technology
allows rapid development of advanced clients with a rich and user-friendly interface.

Typical use case:
It would be a small application requiring rich media support and a plain user interface for a large audience. For
example, this technology has been used for eLearning applications based on Nuxeo EP.

GWT Client

GWT (Google Web Toolkit) allows the Java development of applications that will be deployed under
HTML/JavaScript format.

Nuxeo has integrated the GWT technology:

® in the build environment (via Maven),

® with the platform via dedicated REST APIs,

* with the extension points model (to allow modular development with GWT as it is available within the rest of
Nuxeo EP).

Technologies:

® Google Web Toolkit 1.5,
* JAX-RS to communicate with server.

Key Points:
The GWT technology allows the development of user-friendly and reactive applications with no deployment needed.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 70

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

From the development side, it is highly productive to be able to code in Java (Java IDE, Type Safety, unit tests)
without bothering with classical RIA related problems (JavaScript debug, multi-browsers support, etc.).

Typical use case:
GWT allows the development of complex interfaces that are difficult to create rapidly with standard web
technologies:

® Text and image annotation interface,
¢ Tiling client to display and navigate in large images.

Shell Client
The Shell client is based on the client same library than the one embedded in Apogee.

With Nuxeo Shell, the client is presented with a command-line shell and a set of commands to directly access
Nuxeo Services and Content Repository.

Technologies:

* Java OSGi,
¢ Groovy Scripting,
® Jline for the command line.

Key Points:
The Nuxeo Shell may be used in 2 modes:

® the interactive mode (commands line use),
¢ the non-interactive mode (scripts & batches).

The available commands are defined by an extension point and Java classes or by simple Groovy scripts. It is
therefore very easy to add customized commands for each project.

Typical use cases:
The Nuxeo Shell may prove useful in several cases:

® administration access:
® command line use,
® scripting implementation of customized commands.
¢ Exec environment for scheduled commands,
® Data recovery tool,
® Low level performance test tool.

Nuxeo Deployment model
Deployment phases

The Nuxeo Platform deployment is incremental: the startup process involves different processors for different
phases.

1. Template processor for configuration
2. Deployment-fragment pre-processor
3. Bundle activation and deployment

4. WAR/EAR deployment

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 71

http://doc.nuxeo.com/x/GATF

nuXxeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Servlet container JCA

Nuxeo Package

(Wehiesorce) (awa comporenyy| |(Java

Nuxeo Bundle
xml [_java component J} Nuxeng =
E =10 QI PONETN
SR
Application Server

Templates +

pre-deploy

JEE depoy

EAR/WAR Package EAR/WAR Package

Nuxeo
Componen

—)
JEE Component|=-=— JEE Component NUXeo
xml [P component Componen

Web resource T
Componen

In this section

¢ Deployment phases
® Template processor

® Deployment fragment preprocessor
® Bundle deployment
[]

Standard WAR/EAR deployment

® NuxeoCtl
® Existing deployment targets

Template processor

The template system allows to use template for generating configuration files:

data source declaration

JCA connector declaration

SMTP Gateway

monitoring extensions

misc extension point contributions
(LDAP, SMTP, OpenOffice.org)

The template processor system uses Java property files to read the variable and do the replacement in the template
to generate the actual configuration files.

The template processor system contains a profile system so that a given server can quickly be reconfigured for a
target environment:

® Dev profile

® Integration profile
® Production profile
[}

The template system uses Freemarker so that template can contain simple conditional processing.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 72

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<extension target="org.nuxeo.ecm.core.repository.RepositoryService"
point="repository">
<repository name="default"
factory="org.nuxeo.ecm.core.storage.sql.ra.PoolingRepositoryFactory">
<repository name="default">

<pool minPoolSize="${nuxeo.vcs["min-pool-size"]}"

maxPoolSize="${nuxeo.vcs["max-pool-size"]1}"
blockingTimeoutMillis="100" idleTimeoutMinutes="10" />

<#if "${nuxeo.core.binarymanager}" != "" >

<binaryManager class="${nuxeo.core.binarymanager}" />
</#if>

<clustering enabled="${repository.clustering.enabled}"
delay="${repository.clustering.delay}" />

<binaryStore path="${repository.binary.store}" />

Deployment fragment preprocessor
In Nuxeo, the target web application is in fact created from a lot of separated bundles.

For that each bundle can contribute :

® resources to the WAR

® declaration in the web.xml

® declaration in the faces-config.xml
® Java property files for i18n

[]

Because in JEES5 there is no standard way to do that, we use a pre-deployment processor that will process the
bundles for deployment-fragment.xmil files.

The deployment fragment contains ANT like commands that will be executed in order to contribute bundle resources
to the JEE WAR Archive.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 73

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<extension target="pages#PAGES">
<!-- Bind url to start the download -->
<page view-id="/nxconnectDownload.xhtml"
action="#{externalLinkManager.startDownload()}" />
</extension>

<extension target="faces-config#NAVIGATION">
<navigation-case>
<from-outcome>view_admin</from-outcome>
<to-view-id>/view_admin.xhtml</to-view-id>
<redirect />
</navigation-case>
</extension>

<extension target="web#STD-AUTH-FILTER">
<filter-mapping>
<filter-name>NuxeoAuthenticationFilter</filter-name>
<url-pattern>/nxadmin/*</url-pattern>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>
</filter-mapping>
</extension>

Bundle deployment

This phase is the real deployment “a la OSGi” :

® activate bundles
® declare components, services and extension points
® resolve Extension Point contributions

Standard WAR/EAR deployment

The standard WAR deployment is managed by the host application server that will handle:

* Web resource declaration

(using the aggregated descriptor generated by the pre-deployment)
® JSF initialization
¢ Seam Init

NuxeoCtl

NuxeoCltl is not really part of the deployment, but it's a central tool that helps managing Nuxeo Startup.

NuxeoCtl provides

® a Nuxeo Bootstrap
® runs template system
¢ starts the target Application Server
® some administration tools
* Marketplace package administration and installation
® start/stop/restart/configure ...

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

74

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/ADMINDOC/nuxeoctl+and+Control+Panel+usage

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

® asimple command GUI

NuxeoCtl, like the Templating System, is not really needed to be able to run Nuxeo. It just helps having a simple and

efficient configuration.

It will be more and more true as we continue integrating features inside NuxeoCtl :

® multi-node commands (like update package on each node)
® cloud commands

In a sense, NuxeoCil is close to what is provided in several “Cloud packaged tomcats” (TcServer, CloudFoundry ...).

Existing deployment targets

Nuxeo Platform currently supports several deployment targets.

Testing Custom
(Junit) Tomcat/JBoss
(dynamic mode)
NuxeoCtl Yes
Config templating Yes
Pre-deployment Started by custom
deployer
Bundle activation Yes via Junit Started by custom
deployer
Standard Yes
deployment
Full deployment No JSF / WAR Yes
Marketplace N/A Yes
feature

Depending on the target platform:

¢ all deployment phases may not be run
¢ platform features may change

Tomcat WAR
(static mode)

Started by Servlet
listener

Yes

Yes

No

Jboss EAR
(static mode)

Started by Jboss
EAR listener

Yes

Yes

No

The static deployment model was added initially for JBoss and was then extended to Tomcat too.

In the static deployment model NuxeoCtl pack command is run to:

Copyright © 2010-2013 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 75

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

® run the template system
® run the pre-processing
® reorganize the WAR/EAR structure
® add a activator to start the Bundle deployment
® Zip everything
Solid (zipped)
____________________ EAR/WAR
| Activator |

: Nuxeo
Nuxeo Package Component
xml Nuxeo
Nuxeo Bundle [Nuxeoctl pac|%> l Component
xml (_java component) ! Nuxeo
(web resource J [tempiates > ore *J"‘"""’”:J> | Component |

Related topics

nuxeoctl and Control Panel usage (Nuxeo Installation and Administration)

Nuxeo Deployment model (Nuxeo Enterprise Platform (EP))

Deployment options
In this section, the different deployment possibilities are described.

Agile deployment
Thanks to Nuxeo Runtime and to the bundle system, Nuxeo EP deployment can be adapted to your needs:

¢ deploy only the bundles you really need,

® deploy on multiple servers if needed,

® deploy on multiple infrastructure:
® gserver side: JBoss, Tomcat, Jerry or POJO,
® client side: Equinox, POJO.

Simple deployment

For a simple deployment you have to:

® define the target Nuxeo distribution (in most of the cases Nuxeo DM + some extra plugins),
® define the target deployment platform:

¢ full JEE server: JBoss AS,

® servlet container: Tomcat,

®* embeded mode: Jetty.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 76

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/ADMINDOC/nuxeoctl+and+Control+Panel+usage

nuXxeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

In this section

® Agile deployment
® Simple deployment
® (Cluster deployment
® Multi-VM deployment
® Service externalization
® |solating the web layer

® Sample deployments
®* HA deployment and DRP
® Offline client
® Multi-Instances

The Tomcat packaging comes in two flavors:

® bare Tomcat packaging,
* JCA/TA Tomcat packaging (default): it adds to Tomcat the required infrastructure to manage transaction and

JCA polling.
P ™
Full JEE Nuxeo EP —
Deployment] Distribution , DB
JEE App Server Server
(JBoss AS)
Nuxeo EP -
Servlet Container Distribution DB
Deployment . .
Servlet Container Server
(Tomcat)
Nuxeo EP
Embedded mode Distribution [=r=s524
mpe e
Deployment [Jetty | DB

In most of the case, the Nuxeo server is behind a reverse proxy that is used to provide:

® HTTPS/SSL encryption,
® HTTP caching,
¢ URL rewritting.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 77

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

[) DB
Http NuxeoEP |
reverse-proxy ™| Distribution Server
~ S/ R —
JBoss AS / Tomcat
SSL, Http-Caching, o
url rewriting Application layer Storage

Cluster deployment
In order to manage scale out, Nuxeo EP provides a simple clustering solution.

When cluster mode is enabled, you can have several Nuxeo EP nodes connected to the same database server.
VCS cluster mode manages the required cache invalidation between the nodes. There is no need to activate any
application server level cluster mode: VCS cluster mode works even without application server.

Depending on the Ul framework used for presentation layer, the network load balancing can be stateful (JSF
webapp) or stateless (WebEngine).

| NuxeoVCSCluster |
| Nuxeo EP
Distribution |
" - I
JBoss AS [Tomcat |
p N I
Nuxeo EP
Distribution |
\ A
Shared |
JBoss AS / Tomcat Filesystem |
s h |
Nuxeo EP
Distribution |
- i
| JBoss AS / Tomcat |
e

Multi-VM deployment

Nuxeo components interact between each others via service interfaces. Since most services can be remotely called
via RMI, you can split a Nuxeo distribution (like DM) in several parts on several JVM.

Of course, this kind of multi-VM deployment is more complex than simple mono-vm deployment:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 78

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

® you need to configure service lookup layout (service groups),
® all additional custom plugins must be cleanly packaged.

Nevertheless, this kind of deployment can be interesting to solve specific requirement.
Service externalization

Depending on your use cases, some services may consume more resources than others. For example, if the
application needs to do heavy conversion work or needs to resize a lot of pictures, it may be interesting to isolate
theses services:

® to prevent batch processing from slowing down interactive processing,
® to spread services on more CPUs.

" Nuxeo distrib. (B)

[Nuxeo runtime]

JBoss AS

........................... specialized server
Nuxeo distrib. (A)i

Client's requests -
= : >

(Nuxeo runtime |

DB
Server

Shared
Filesystem

JBoss AS

main server

Isolating the web layer

An other use case is to separate Nuxeo bundles into two categories:

® bundles that manage persistent transactional data,
® bundles that don't.

By doing this split, we have:

® A "Stateless server" that runs:
® all services without state,
* the Ul layer (framework and screens associated to features).
* A "Stateful server" that runs all persistent services including the Document repository.

This two parts packaging provides some advantages:

* it allows scaling out of the web layers,
¢ it provides full three layers decoupling (Nuxeo can be hosted in a 3 layers DMZs architecture).

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 79

http://doc.nuxeo.com/x/GATF

nuXxeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Stateless distrib.

Stateful distrib.

| B}

JBoss AS

« web front »
Client's @
requests o
Nuxeo runtime Filesystem
Stateless distrib. [) Sys
| JBoss AS |
«stateful server »

(Nuxeo runtime)

| JBoss AS |
« web front »

© These two packaging are somehow badly named since the Stateless server is not really
stateless (JSF is stateful for example), but it does not manage any persistent state.

Sample deployments

HA deployment and DRP

If you want to provide a Disaster Recovery Plan, you will need to host two separated Nuxeo infrastructures and be
sure you can switch from one to an another in case of problem.

The first step is to deploy two Nuxeo infrastructures on two hosting sites. These infrastructure can be mono-VM,
cluster or multi-VM. The key point is to provide a way for each hosting site to have the same vision of the data:

® SQL data stored in the SQL database server,
® Filesystem data.

Because Nuxeo storage VCS+Filesystem is safe, you can use a replication system between the two sites. Basically,
you can use the replication/standby solution provided by the Database server you choose. This replication tool just
has to be transactional.

For the filesystem, any replication system like RSync can be used.

Because the blobs are referenced by their digest in the database, you don't have to care about synchronization
between the DB and FS: in the worst case, you will have blobs that are not referenced by the DB on the replicated
site.

This kind of DRP solution has been successfully tested in production environment using:

® PosgreSQL stand-by solution (WAL shipping),
® RSync for the file system.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 80

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

4

-~

Nuxeo EP 1 —» DB DB Server
g Distribution Server Native
j h. replication
_...e"‘ i |JBoss AS / Tomcat File system E
Clients > | Hosting Site B (passive) ||
Filesystem
requests _| replication
- N (Rsync)
NuxeoEP | » DB
Distribution Server
~
JBoss AS / Tomcat | File system
Hosting Site A (active)

Offline client

Multi-Instances

In some cases, you may want to have several separated instances:

® because you have several sub-applications,
® because you want to use different kinds of hardware depending on the sub-application,
® because you have constraints on hosting in separated DMZ.

A typical use case is when you have an internal application for contribution and viewing, but you also need to let
external (internet) users access a small part of the content. Technically, you could have the same application
serving the content depending on the user profile or several applications sharing the same repository. But in many
cases, hosting and security constraints may lead to have two separated hosting platforms: one for internal and one
for external.

In order to achieve that you can leverage the built-in feature for remote publishing between two Nuxeo instances.

See Remote Plublisher for more details).

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 81

http://doc.nuxeo.com/x/GATF
http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewBundleGroup/grp:org.nuxeo.ecm.platform.publisher

nuXxeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Contributors Intranet External
Administrators Viewers Viewers

S — et e e e g e g o e e e e e e,

[Nuxeo-JSF || WebEngine |

Remote
Publishing
htt

—

WebEngine

e

Nuxeo Distribution
(DM, CMF, DAM _.)

Nuxeo Distribution
(DM, CMF, DAM)

S | |

__Internal hosting zone | __External hosting zone

Performance management for the Nuxeo Platform

Managing sizing and performance of any ECM application is a tricky job, because each application is different and
many factors must be taken into account. The Nuxeo Platform is designed to optimize performance. As a
consequence, continuous performance testing is part of the Nuxeo quality assurance process. Results are based on
metrics that focus on user experience, such as application response time. The outcome of this continuous,
measured improvement is that the Nuxeo Platform gives rapid response times even under heavy loads, with
thousands of concurrent users accessing a repository that stores millions of documents.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 82

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

On this page

® Performance of the Nuxeo Platform
® |mpacting factors
® Factors that have little or no impact
® Some generic tips for tuning the Nuxeo Platform

®* How we manage the Nuxeo Platform performance
®* A Toolbox for benchmarking the Nuxeo Platform
® Continuous performance testing via Cl
® Periodic Benchmark campaigns

® Sizing your Nuxeo Platform-based ECM application
® Define your requirements
® Setup performance testing from the beginning
® Use interpolation when needed

® Performance toolbox provided by the Nuxeo Platform
® Benchmarking tools
Metrics to monitor during a bench

[]
® Monitoring tools
® Nuxeo Metrics Monitoring tools with mbeans

® Some example Benchmark results
Goals

Steps

Results overview
Customizing bench

Performance of the Nuxeo Platform

The first step is to identify which factors do impact performance and which factors do not impact performance.

Impacting factors
Security policies

The typical behavior of an ECM system is that you can only view a Document if you are allowed to. The same
principle applies to creating or modifying documents. However, the "Access Check" is the most factor that impacts
most significantly because the system may need to check for read access on a very large number of documents.

The default security policy in Nuxeo uses ACLs (Access Control Lists). Depending on the target use cases, you may
have very few ACLs (when ACLs are defined only on top containers) or a lot of ACLs (when they are defined on
almost every documents). To be able to deal with both cases, Nuxeo provides several optimizations in the way
ACLs are processed: for example, ACL inheritance may be pre-computed. But depending on the target use-case,
the best solution is not always the same one.

In the Nuxeo Platform we allow to define custom security policies that can be based on business rules. We also
provide ways to convert these business rules into queries so that checks can be done quickly on huge documents
repositories.

As a security policy is clearly an impacting factor, the Nuxeo Platform provides a lot of different optimizations. You
can then choose the one that fits your needs.

Presentation layer

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 83

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

The presentation layer is very often the bottleneck of an ECM web application.

It is easy to make mistakes in the display logic (adding costful tests, fetching too much data ...) that can slow down
the application. This is particularly true when using JSF, but even when you use another presentation technology, it
is possible to impact performance by wrongly modifying some templates.

The good news is that Nuxeo's default templates are well tested. However, when modifying Nuxeo's template or add
a new custom one, web developers must be aware of performance issues:

® you don't want to have a round trip to database inside a display loop (that's what prefetch is done for),

® you don't want a costful business test to be done 20 times per page (that's what Seam context is made for),

® you don't want a single page listing 100 000 documents (because there is no user able to use it and that the
browser won't be happy),

This may seem obvious, but in most cases you can solve performance issues just by profiling and slightly modifying
a few display templates.

Document types

A very common task in an ECM project is to define your own Document Types. In most cases it will have little or no
impact on performance.

However, if you define documents with a lot of meta-data (some people have several hundred meta-data elements)
or if you define very complex schema (like nesting complex types on 4 levels), this can have impact on:

® the database : because queries will be more complex,
® the display layer : because correctly configuring prefetch will be very important.

Number of documents

As expected, the number of documents in the repository has an impact on performance:

® impact on database size, and as a consequence on the database performance,
® impact on ACLs management,
® possible impacts on Ul listings.

This is a natural impact and you cannot exclude this factor when doing capacity planning.

The good news is that Nuxeo's document repository has been tested successfully with several millions of documents
with a single server.

Concurrent requests

The raw performance of the platform is not tied to a number of users but to a number of concurrent requests: 10
hyperactive users may load the platform more than 100 inactive users.

In terms of modeling the users activity, think in terms of Transaction/s or Request/s: concurrent users is usually too
vague.

Factors that have little or no impact

Size of the files

When using Nuxeo's repository, the actual size of the binary files you store does not directly impact the performance

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 84

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

of the repository. Since the binary files are stored in a Binary Store on the file system and not in the Database,
impact will be limited to Disk I/O and upload/download time.

Regarding binary file size, the only impacting factor is the size of the full-text content because it will impact the size
of the full-text index. But in most cases, big files (images, video, archives ...) don't have a big full-text content.

Average number of documents per folder

A common question is about the number of documents that can be stored in a Folder node. When you use Nuxeo's
VCS repository, this has no impact on the performance: you can have folders with several thousands of child
documents.

When designing your main filing plan, the key question should be more about security management, because your
hierarchy will have an impact on how ACLs are inherited.

Some generic tips for tuning the Nuxeo Platform
Independent from use cases, some technical factors have an impact on performance:
Application server

The Nuxeo Platform is available on Tomcat and JBoss servers. Tomcat tends to have better raw performance than
JBoss.

Tomcat HTTP and AJP connector configuration impact the behavior of the server on load, limiting the maxThread v
alue to prevent the server from being overloaded and to keep constant throughput.

Under load the JBoss JTA object store can generate lots of write operations even for read-only access. A simple
workaround can be to use a ramdisk for the server/default/data/tx-object-store folder.

Note also that the default maximum pool size for the AJP connector on JBoss is only 40, which can quickly become
a bottleneck if there is no static cache on the frontal HTTP server.

JVM tuning

Always use the latest 1.6 JDKs, they contain performance optimizations.

Log level

Log level must be set to INFO or WARN to reduce CPU and disk writes.

Database

Database choice has a large impact on performance.

PostgreSQL has more Nuxeo optimizations than other databases. It is the preferred database platform.
Tuning is not optional, as Nuxeo does not provide default database configurations for production.
Network

The network between the application and the database has an impact on performance.

Especially on a page that manipulates many documents and that generates lots of micro JDBC round trips.

Our advice is to use a Gigabit Ethernet connection and check that any router/firewall or IDS don't penalize the traffic.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 85

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Here are some example of the command ping -s PACKETSIZE in the same network (MTU 1500) that can give you
an idea of the latency added to each JDBC round trip:

Ping packet size Fast Ethernet (ms) Gigabit Ethernet (ms) ratio

default 0.310 0.167 1.8562874
4096 1.216 0.271 4.4870849
8192 1.895 0.313 6.0543131

While the database will process a simple request in less than 0.05ms most of the JDBC time will be spend on the
network

from 0.3ms on Gigabit Ethernet to 1.9ms on Fast Ethernet (6 times more).
Note that you can check your network configuration using the ethtool command line.

If you have a firewall or your database don't reply to ICMP ping, you can test the network latency using a tool like jdb
ctester.

Also knowing your JDBC driver configuration may help, for instance Oracle by default do a round trip every 10 rows,
this can be changed using the following JAVA_OPTS

-Doracle.jdbc.defaultRowPrefetch=50

How we manage the Nuxeo Platform performance

Now, that we have seen that managing performance involves many factors, let's see how we manage this at Nuxeo
for the Platform and its modules.

A Toolbox for benchmarking the Nuxeo Platform

We provide several tools to load test and benchmark the Platform: see the Tool chapter later in this document.

Continuous performance testing via ClI

Benchmarking once is great, but the real challenge is to be sure to detect when performances are impacted by a
modification (in the Ul, in the Document Types, ...).

To do so, we use small benchmark tests that are automatically run every night by our CI chain. The test is
configured to fail if the performance results are below the performance results of the previous build.

This fast bench enables to check core and Ul regressions on a simple case.

® Hudson benching job

¢ Daily bench report

¢ Daily bench monitoring report
® Benching script sources

This allows us, for example, to quickly detect when a template has been wrongly modified and lets us quickly correct
it before the faulty changeset becomes hidden by hundreds of other modifications.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 86

http://doc.nuxeo.com/x/GATF
https://github.com/bdelbosc/jdbctester
https://github.com/bdelbosc/jdbctester

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Periodic Benchmark campaigns
Every 2 or 3 months, we run major benchmarking campaigns to tests the platform on the limits.

This is a great opportunity to do careful profiling and eventually introduce new database and Java optimizations.

Sizing your Nuxeo Platform-based ECM application

In order to correctly size your Nuxeo Platform-based ECM application, you should:

Define your requirements

You have to define your needs and hypotheses for any factor that can impact the platform performance:

target number of documents in the repository,
target security policy,

target filing plan and ACLs inheritance logic,
target request/s.

[]
[}
[}
[]
Setup performance testing from the beginning
Performance benchmarking is not something you should postpone to a pre-production phase.

It's far more efficient (and cheaper) to setup performance tests from the beginning.

Start with simple benchmark tests (based on the ones provided by Nuxeo) on a raw prototype and improve them
incrementally as you improve your customization.

Using this approach will help you:

® detect a performance issue as soon as possible,
® correct small problems when they are still small,
® avoid having a lot of mistakes to correct just before going to production.

You can leverage all the standard tests we provide and also the Hudson integration if you want to use Hudson as Cl
chain provider.

Use interpolation when needed
Nuxeo provides standard benchmarks for both small and big documents repositories.

When needed, you can use these results to interpolate results from your tests.
Performance toolbox provided by the Nuxeo Platform

Benchmarking tools

We use FunkLoad for performance testing. This tools enables us to produce quickly new scenarios.
Here are the main advantages:

® An http proxy recorder generates the initial bench script.

® FunkLoad comes equipped and ready with "batteries included":
® helpers to make assertions,
® library to generate random content,
® |ibrary to share user credentials between threads,

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 87

http://doc.nuxeo.com/x/GATF
http://funkload.nuxeo.org/

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

® basic monitoring.
Scripts are done in Python which enables complex scenario implementation.
Benches are easily automated using simple Makefile.
FunkLoad produces a detailed report and differential report to compare two bench results.
Nuxeo DM has a Python library to write tests with a "fluent interface pattern" like:

(LoginPage(self) .view()
.login('Administrator', 'Administrator’')
.getRootWorkspaces()

.createWorkspace('My workspace', 'Test ws')
.rights().grant('ReadWrite', 'members')
.view()

.logout())

This makes it easy to create new scenarios.

We also use Nuxeo DM addon tools like nuxeo-platform-importer to populate the document base.

Metrics to monitor during a bench

CPU: The iowait or percent of time that CPU is idle during which the system has outstanding disk 1/0 request
can be useful to identify an I/O bottleneck. On multi CPUs, if only one of the CPU is used at 100%, it may be
the cause of an overloaded garbage collector.

JVM Garbage Collector throughput: this is the percentage of total time of the JVM not spent in garbage
collection.

Disk utilization: to check for device saturation.

JBoss JCA connection pool.

SQL queries that took up most time.

Monitoring tools

sysstat sar for monitoring the system activity (cpu, disk, network, memory ...). Using kSar it can produce nice
pdf reports.

The JBoss LoggingMonitor service can monitor specific attributes of a MBean periodically and log its value to
the filename specified.

JVM garbage collector logging using a JAVA_OPTS.

PosgreSQL log_min_duration to log SQL queries.

logchart to produce miscellaneous charts from the sar output, JBoss logs, GC logs and dabatase logs.
pgfouine the PostgreSQL log analyzer wich is used by logchart.

Example of a logchart monitoring report

More info on the Monitoring Nuxeo DM FAQ.

Nuxeo Metrics Monitoring tools with mbeans

In nuxeo-runtime-management-metric, Nuxeo provides the infrastructure that can be used to monitor use of
services or class through mbeans. The mbean displays access counts on methods and the time spent on it. It can
also serialize its results in XML.

As an example, we will first see how to configure and monitor access to the Nuxeo repository backend class.

Monitor Nuxeo core backend access

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 88

http://doc.nuxeo.com/x/GATF
http://qa.nuxeo.org/funkload-bench/full/38/results/reader-cpu/funkload/
http://funkload.nuxeo.org/report-example/diff_seam_java_6_vs_5
https://github.com/nuxeo/nuxeo-platform-importer/blob/release-5.6/README.md
http://pagesperso-orange.fr/sebastien.godard/
http://ksar.atomique.net/linux.html
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossLoggingMonitor
http://public.dev.nuxeo.com/~ben/logchart/monitor.html
http://pgfouine.projects.postgresql.org/
http://qa.nuxeo.org/funkload-bench/full/38/results/reader-cpu/funkload/
http://doc.nuxeo.org/xwiki/bin/view/FAQ/MonitoringNuxeoDM

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

The idea is to plug our monitor class as a proxy of the real Repository class. When a method gets through the proxy,
metrics are automatically added and named with interface and method names. All metrics have an operation
"Sample" that provides the metrics you are looking for.

1. Modify the file config/default-repository-config.xml(be careful to modify the right file if
you are using templates configuration system) and add this line:

<backendClass>org.nuxeo.ecm.core.storage.sql.management.MonitoredJDBC
Backend</backendClass>

This class is a proxy to the real backend class. Nuxeo VCS core storage will behave exactly like
before. The proxy just counts and records time spent on each method of the interface, and make it
available to the mbean.

When using VCS remote on a deported client, the class to used is Monitored
NetBackend.

A

To view the result, run jconsole or Visualvm.

Connect to your running Nuxeo repository Java process.

4. Go to the mbean tab.

In the mbeans "org.nuxeo" you will find all the metrics. MetricEnable contains operations to
enable/disable logging and serialisation. Serialisation is used to have an xml output. Preferences
can be set with MetricSerializer operations.

w

Create your own monitored proxy

The previous example had its proxy class available in the Nuxeo Platform and the backend class could easily be
replaced by modifying an extension point. However, creating a new proxy class is still easy. Let's try adding a
monitor proxy to all the listener to monitor Listener access:

Listener objects are created in EventListenerDescriptor: initListener.

The idea is to create the proxy with MetricInvocationHandler.newProxy and provide the instance to proxy
and the Interface class to monitor.

The proxy will replace the original instance:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 89

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

public void initListener() throws Exception {
if (clazz != null) {
if (EventListener.class.isAssignableFrom(clazz)) {
inLineListener = (EventListener) clazz.newInstance();
inLineListener = MetricInvocationHandler.newProxy (
inLineListener, EventListener.class);
isPostCommit = false;
} else if (PostCommitEventListener.class.isAssignableFrom(clazz)) {
postCommitEventListener = (PostCommitEventListener)
clazz.newInstance();
postCommitEventListener = MetricInvocationHandler.newProxy (
postCommitEventListener, PostCommitEventListener.class);
isPostCommit = true;

Restarting the repository and accessing to the proxy will make the class monitored in the monitoring tool.
Some example Benchmark results

Goals

Demonstrate adequate response times for various document retrieval and insertion operations on a large storage of
10 million documents.

Steps

1. Tune the database following tips in the Nuxeo PostgreSQL FAQ.

2. Tune Nuxeo DM: for mass import, we disable the fulltext indexing (as described in the "Mass import specific
tuning" section of PostgreSQL configuration page) and disable the ACL optimization (NXP-4524).

3. Import content: mass import is done using a multi-threaded importer to create File document with an attached
text file randomly generated using a French dictionary. Only a percentage of the text file will be indexed for
the full text, this ratio simulate the proportion of text in a binary format.

Sources of the nuxeo-platform-importer

4. Rebuild fulltext as described in the "Mass import specific tuning" FAQ.

5. Generate random ACLs on documents. This can be done with a simple scripts that generate SQL inserts into
the ACL table.

6. Enable the read ACLs optimization, performing the SQL command:

SELECT nx_rebuild_read_acls();

7. Enable the ACL optimization (NXP-4524).
8. Bench using the same scripts as in continuous integration for writer and reader. In addition we have a
navigation bench that randomly browses folders and documents.

Results overview

The base was successfully loaded with:

® 10 million of documents,
* 1TB of data.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 20

http://doc.nuxeo.com/x/GATF
http://www.nuxeo.org/xwiki/bin/view/FAQ/PostgreSQLSettings
http://doc.nuxeo.com/display/ADMINDOC/Configuring+PostgreSQL#ConfiguringPostgreSQL-Massimportspecifictuning
http://doc.nuxeo.com/display/ADMINDOC/Configuring+PostgreSQL#ConfiguringPostgreSQL-Massimportspecifictuning
https://jira.nuxeo.org/browse/NXP-4524
http://hg.nuxeo.org/addons/nuxeo-platform-importer/
http://www.nuxeo.org/xwiki/bin/view/FAQ/PostgreSQLSettings
https://jira.nuxeo.org/browse/NXP-4524

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Below are some average times:

® Accessing a random document using the Nuxeo DM web interface under load of 250 concurrent users
accessing the system with 10 seconds pause between requests: 0.6s.

® Accessing a document that has already been accessed, under load: 0.2s.

¢ Accessing a random document or download attached file using a simple WebEngine application: 0.1s.
It can handle up to 100 req/s which can be projected to at least 1000 concurrent users.

¢ Creating a new document using the Nuxeo DM web interface under load: 0.8s.

This bench showed no sign of being impaired by the data volume once the data was loaded from disk.

http://public.dev.nuxeo.com/~ben/bench-10m/

Customizing bench

The bench procedure can be customized to validate customer installation:

®* The mass importer tool can be used as a template to inject a customized document type instead of File
documents.

® Scripts can be modified to have realistic scenarios.

® Scripts can be combined to create realistic loads.

Customization and Development

Nuxeo Platform provides several solutions to let you customize and extend the platform:

® use Nuxeo Studio to do your configurations and extensions via a Web Ul,
® write XML files to configure Nuxeo and deploy new plugins,
® develop your own extensions and plugins.

Choosing the right solution depends on:

® your requirements:
if you want to customize your Nuxeo application, Nuxeo Studio should do all the work for you. But if you want
to develop a very specific service or component, you will have to write code;

® your profile:
in order to develop extensions to Nuxeo you need to be able to write some Java code.

Using Nuxeo Studio

If you are not used to customizing Nuxeo, you should give a try to Nuxeo Studio, a visual environment to configure
your Nuxeo DM, DAM or CMF instance.

Doing XML configuration
Inside the Nuxeo Platform, you can configure a lot of stuff via simple XML files.

We advise you to give first a glance at all the Nuxeo Platform wiki domain, so that you get a global idea of the
architecture of the product. In particular, you should have a look at the Component model overview that will explain
you how the platform is built.

Then, you will need to know:

® what can be configured inside the platform (what extension points exist);
® what contributions are already deployed in the Nuxeo distribution you use.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 91

http://doc.nuxeo.com/x/GATF
http://public.dev.nuxeo.com/~ben/bench-10m/
http://doc.nuxeo.com/display/Studio

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

If you want to go further and configure other aspects of Nuxeo, you don't need to get the source code, you can
simply browse the Platform Explorer Site that let you browse:

® Nuxeo Distributions,
® Services,
® Extension Points.

For each item, you can have access to description, XML definition and samples.
For an example, you can have a look at this Sample Link.

When you are not creating a real Nuxeo Plugin (i.e. a JAR), XML configuration files should:

® be copied in the "config" directory (nuxeo.ear/config or nxserver/config),
® have a filename ending with —-config.xml,
® have a unique component identifier.

By default, XML files contributed in the "config" directory are loaded only when the server starts, so you need to
restart the server to see your changes.

Java plugins
If you want to go further (or just prefer coding), you can of course use Java to build a new Nuxeo component.

One of the key points is that you don't need Nuxeo source code to do that:

® you don't need to have Nuxeo source code to be able to write a plugin,
® you don't need to rebuild Nuxeo to deploy your plugin.

Nuxeo Java components are deployed the same way as XML components are deployed, you just have to package
the JAR correctly, copy it in the right location and restart the server.

In order to start coding you can read the Dev Cookbook.

Learning to customize Nuxeo EP

Inside Nuxeo EP, pretty much everything is about Extension Point.

Extension points are used to let you contribute XML files to the Nuxeo components.

This means you can use the extension point system :

to define a new Document Type,

to hide a button from the default Ul that you want to remove,
to change the condition that make a particular view available,
to add a new navigation axis,

to change the way the Documents listings are displayed,

So before going further, you may want to take a look at the Component model overview section.

Once you have understood the notion of Extension Point and contribution, you can go ahead and start configuring
the platform.

For that, you first need to know what you want to configure: find the Extension Point you want to contribute to.
The next sections will give you an overview of the main concepts of the most used extension points.
If you need more, you can directly use the Platform Explorer to browse all the available extension points.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 92

http://doc.nuxeo.com/x/GATF
http://explorer.nuxeo.org/nuxeo/site/distribution/Nuxeo%20DM-5.6/
http://explorer.nuxeo.org/nuxeo/site/distribution/
http://explorer.nuxeo.org/nuxeo/site/distribution/Nuxeo%20DM-5.6/listServices
http://explorer.nuxeo.org/nuxeo/site/distribution/Nuxeo%20DM-5.6/listExtensionPoints
http://explorer.nuxeo.org/nuxeo/site/distribution/Nuxeo%20DM-5.6/viewBundle/org.nuxeo.ecm.platform.usermanager
http://explorer.nuxeo.org/nuxeo/site/distribution/current/listExtensionPoints

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Once you have found your target Extension Point, you simply have to create an XML file that holds the configuration
and deploy it inside your Nuxeo server.

The exact XML content will depends on each extension point, but they all start the same:

<?xml version="1.0"?>
<component name="unique.name.for.your.xml.contribution">

<extension target="target.component.identifier"
point="extensionPointName">

<!-- XML Content Depending on the target Extension Point goes HERE -->
</extension>

</component>

In order to have your contribution deployed you need to:

® have your filename end with -config.xml,
® have your file placed in the config directory (nuxeo.ear/config for JBoss distribution or nxserver/conf
ig for Tomcat distribution)

By default, xml configuration files are only read on startup, so you need to restart your server in order to apply the
new configuration.

RELATED TOPICS
Component model overview

Document types
This chapter presents the concepts of schemas, facets and document types, which are used to define documents.

In Nuxeo EP, a fundamental entity is the document. A file, a note, a vacation request, an expense report, but also a
folder, a forum, can all be thought of as documents. Objects that contain documents, like a folder or a workspace,
are also themselves documents.

Any given document has a document type. The document type is specified at creation time, and does not change
during the lifetime of the document. When referring to the document type, a short string is often used, for instance
"Note" or "Folder".

A document type is defined by several schemas. A schema represents the names and structure (types) of a set of
fields in a document. For instance, a commonly-used schema is the Dublin Core schema, which specifies a standard
set of fields used for document metadata like the title, description, modification date, etc.

In addition to the schemas that the document type always has, a given document instance can receive facets. A
facet has a name, like "Downloadable" or "Commentable", and can be associated with zero or more schemas. When
a document instance receives a facet, the fields of its schemas are automatically added to the document.

© Per-document facets and facets associated with schemas are a new feature since Nuxeo EP
5.4.1 (see NXP-6084).

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 93

http://doc.nuxeo.com/x/GATF
http://jira.nuxeo.org/browse/NXP-6084

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

To create a new document type, we start by creating one or more schemas that the document type will use. The
schema is defined in a . xsd file and is registered by a contribution to the schema extension point. The document
type is then registered through a contribution to the doctype extension point which specifies which schemas it uses.
Facets are also registered through the doctype extension point.

In this section

Schemas
Facets
Structural document types
Ul document types
® General information
® Facelet views

® |ayout

® Layouts configuration
® Containment rules
® Summary

In addition to the structural definition for a document type, there's another registration at the Ul level, through a
different extension point, to define how a given document type will be rendered (its icon, layouts, default view, etc.).

© The sections below describe how schemas, facets and document types are defined at a low level
in Nuxeo EP using XML configuration files. Unless you're an advanced user, it will be much
simpler to use Nuxeo Studio to define them.

Table of contents:

Schemas
Facets
Structural document types
Ul document types
® General information
Facelet views

L]
¢ Layout
L]
L]

Containment rules
Summary

Schemas

A schema describes the names and types of some fields. The name is a simple string, like "title", and the type
describes what kind of information it stores, like a string, an integer or a date.

A schema is defined in a . xsd file and obeys the standard XML Schema syntax.

For example, we can create a schema in the schemas/sample. xsd file:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 94

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/Studio/Define+a+Document+Type
http://www.w3.org/XML/Schema

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<?xml version="1.0"2?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"”
targetNamespace="http://project.nuxeo.org/sample/schemas/sample/">
<xs:element name="samplel" type="xs:string"/>
<xs:element name="sample2" type="xs:string"/>
</xs:schema>

This schema defines two things:
® an XML namespace that will be associated with the schema (but isn't used by Nuxeo EP),
® two elements and their type.

The two elements are sample1 and sample2. They are both of type "string", which is a standard type
defined by the XML Schema specification.

A schema file has to be referenced by Nuxeo configuration to be found and used. The schema must be referenced
in the schema extension point of the org.nuxeo.ecm.core.schema.TypeService component. A reference to
a schema defines:

® the schema name,
® the schema location (file),
® an optional (but recommended) schema prefix.

For example, in the configuration file 0SGI-INF/types-contrib.xml (the name is just a
convention) you can define:

<?xml version="1.0"2?>
<component name="org.nuxeo.project.sample.types">
<extension target="org.nuxeo.ecm.core.schema.TypeService"
point="schema">
<schema name="sample" src="schemas/sample.xsd" prefix="smp" />
</extension>
</component>

We name our schema "sample”, and the . xsd file is referenced through its path, schemas/sample.

xsd. The schema is registered through the schema extension point of the Nuxeo component org. nu
xeo.ecm.core.schema. TypeService Our own extension component is given a name, org.nuxe
o.project.sample. types, which is not very important as we only contribute to existing extension

points and don't define new ones — but the name must be new and unique.

Finally, like for all components defining configuration, the component has to registered with the system by
referencing it from the META-INF/MANIFEST . MF file of the bundle.

In our example, we tell the system that the 0SGI-INF/types-contrib.xml file has to be read, by
mentioning it in the Nuxeo-Component part of the META-INF/MANIFEST . MF:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 95

http://doc.nuxeo.com/x/GATF
http://www.w3.org/XML/Schema

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Manifest-Version: 1.0
Bundle-SymbolicName: org.nuxeo.project.sample;singleton:=true
Nuxeo-Component: OSGI-INF/types-contrib.xml

You may need to override an existing schema defined by Nuxeo. As usual, this possible and you have to contribute
a schema descriptor with same name. But you must also add an override parameter with value "true".

For instance, you can add your own parameters into the user.xsd schema to add the extra information
stored into your Idap and fetch them and store them into the principal instance (that represents every
user).

The contribution will be something like:

<component name="fr.mycompanyname.myproject.schema.contribution">
<!-- to be sure to deployed after the Nuxeo default contributions>
<require>org.nuxeo.ecm.directory.types</require>
<extension target="org.nuxeo.ecm.core.schema.TypeService"
point="schema">
<schema name="group" src="directoryschema/group.xsd"
override="true"/>
</extension>
</component>

Focus your attention on the override="true" that is often missing

You will need to improve the Ul to also display your extra-informations...

Facets

A facet describes an aspect of a document that can apply to several document types or document instances. Facets
can have zero, one or more schemas associated to them. Configuration is done in the doctype extension point of
the same org.nuxeo.ecm.core.schema.TypeService component as for schemas.

For example, in the same 0SGI-INF/types-contrib.xml as above, we add the following:

<?xml version="1.0"2?>
<component name="org.nuxeo.project.sample.types">
<extension target="org.nuxeo.ecm.core.schema.TypeService"
point="doctype">
<facet name="Rated">
<schema name="rating"/>
</facet>
</extension>
</component>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 96

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Facets can be used in two ways:

® on document types, by adding the facet to the <doctype> element described below,
® on document instances, by application code.

When a document's type or a document's instance has a facet, the document behaves normally with respect to the
added schemas. Facets with no schemas are useful to mark certain types or certain document instances specially,
for instance to add additional behavior when they are used.

Standard Nuxeo EP facets are:

Folderish: special facet allowing the creation of children in this document,

Orderable: special facet allowing the children of a folderish type to be ordered,
Versionable: special facet marking the document type as versionable,
HiddenlInNavigation: special facet for document types which should not appear in listings.

Structural document types

By itself, the schema is not very useful, it must be associated with a document type. This is done in the same docty
pe extension point as above. In this extension point, we define:

the document type to create,

which standard document type it extends (usually "Document" or "Folder"),
what schemas it contains,

what facets it has (this implicitly adds all the facet's schemas).

When extending a document type, all its schemas and facets are inherited as well.

For example, in the same 0SGI-INF/types-contrib.xml as above, we add the following:

<?xml version="1.0"2?>
<component name="org.nuxeo.project.sample.types">

<extension target="org.nuxeo.ecm.core.schema.TypeService"
point="doctype">

<doctype name="Sample" extends="Document ">
<schema name="common"/>
<schema name="dublincore"/>
<schema name="sample"/>
<facet name="Rated"/>

</doctype>

</extension>
</component>

Here we specify that our document type "Sample" will be an extension of the standard system type
"Document" and that it will be composed of three schemas, two standard ones and our specific one,
and has one facet.

The standard schemas "common" and "dublincore" already contain standard metadata fields, like a title, a
description, the modification date, the document contributors, etc. Adding it to a document type ensures that a
minimal level of functionality will be present, and is recommended for all types.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 97

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Ul document types

After the structural document type, a Ul registration for our document type must be done for the type to be visible in
the Nuxeo DM interface (or in other applications based on Nuxeo EP). This is done through a contribution to the typ
es extension point of the org.nuxeo.ecm.platform.types.TypeService component (which is a different
component than for the structural types, despite also ending in TypeService).

For example, in 0SGI-INF/ui-types-contrib.xml we will define:

<?xml version="1.0"2?>
<component name="org.nuxeo.project.sample.ecm.types">
<extension target="org.nuxeo.ecm.platform.types.TypeService"
point="types">
<type id="Sample">
<label>...</label>
<icon>...</icon>
<bigIcon>...</bigIcon>
<description>...</description>
<category>...</category>
<layouts>...</layouts>
</type>
</extension>
</component>

The extension must be added to META-INF/MANIFEST.MF so that it will be taken into account by the deployment
mechanism:

Nuxeo-Component: OSGI-INF/types-contrib.xml,
OSGI-INF/ui-types-contrib.xml

The type element will contain all the information for this type, described below.

General information

The label, description, icon, biglcon and category are used by the user interface, for instance in the creation
page when a list of possible types is displayed.

label: a short name for the type.

description: a longer description of the type.

icon: a 16x16 icon path for the type, used in listings for instance. The path points to a resource defined in the
Nuxeo WAR.

biglcon: a 100x100 icon path for the type, used in the creation screen for instance.

category: a category for the type, used to separate types in different sections in the creation screen for
instance.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 98

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Standard categories used in the Nuxeo DM interface are:

¢ SimpleDocument: a simple document
¢ Collaborative: a document or folder-like objects used for collaboration
® SuperDocument: a structural document usually created by the system

Other categories can freely be defined.

Example:

<type id="Sample">
<label>Sample document</label>
<description>Sample document to do such and such</description>
<icon>/icons/file.gif</icon>
<bigIcon>/icons/file_100.png</bigIcon>
<category>SimpleDocument</category>

</type>

Facelet views

The default-view tag specifies the name of the facelet to use to display this document. This corresponds to a file
that lives in the webapp, by default view documents.xhtml which is a standard view defined in the base Nuxeo
EP bundle. This standard view takes care of displaying available tabs and the document body according to the
currently selected type.

Changing it is not advised unless extremely nonstandard rendering is needed.

The create-view and edit-view tags can point to a specific creation or edit facelets.

Proper defaults are used when these are not specified, so no need to add them to your type.

Example:

<type id="Sample">
<default-view>view_documents</default-view>
<create-view>create_document</default-view>

<edit-view>edit_document</default-view>

</type>

Layout

A layout is a series of widgets, which makes the association between the field of a schema with a JSF component.
The layout is used by the standard Nuxeo modification and summary views, to automatically display the document

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 99

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

metadata according to the layout rules.

Layouts configuration
The layouts section (with a final s) defines the layouts for the document type for a given mode.

Defaults mode are:

create for creation,

edit for edition,

view for view,

any for layouts that will be merged in all the other modes.

The layout names refer to layouts defined on another extension point. Please see the layouts section for more
information.

Example:

<type id="Sample">

<layouts mode="any">
<layout>heading</layout>
<layout>note</layout>
</layouts>

</type>

Containment rules

The subtypes section defines a list of type elements for the document types that can be created as children objects
of other document types. When defining a type, you can specify:

* what child document types can be create in it,
® in what parent document types it can be created.

This can also be defined for a pre-existing type, to add new allowed subtypes. Please make sure you require the
components defining the pre-existing type to ensure a good merge of contributions.

For example, we can specify that the Sample type can be created in a Folder and a Workspace. Note
that we define two new <type> sections here, we don't add this information in the <type
id="Sample"> section.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 100

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<type id="Folder">
<subtypes>
<type>Sample</type>
</subtypes>
</type>
<type id="Workspace">
<subtypes>
<type>Sample</type>
</subtypes>
</type>

It is also possible to define that some types will not be allowed as children in some cases (creation, copy/paste). To
do that, a hidden attribute for the type element can be used.

The hidden cases are stored in a list, so if a check is needed for a hidden case, then the hidden cases list ought to
be verified to check it contains that particular case.

Example:

<type id="Workspace">
<subtypes>
<type>Workspace</type>
<type hidden="create, paste">Folder</type>
<type>File</type>
<type>Note</type>
</subtypes>
</type>

Summary

The final 0SGI-INF/ui-types-contrib.xml looks like:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 101

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<?xml version="1.0"?>
<component name="org.nuxeo.project.sample.ecm.types">

<!-- Add require to component declaring Workspace and Folder types -->
<require>org.nuxeo.ecm.platform.types</require>

<extension target="org.nuxeo.ecm.platform.types.TypeService" point="types">

<type id="Sample">
<label>Sample document</label>
<description>Sample document to do such and such</description>
<icon>/icons/file.gif</icon>
<bigIcon>/icons/file_100.png</bigIcon>
<category>SimpleDocument</category>
<default-view>view_documents</default-view>
<layouts mode="any">
<layout>heading</layout>
<layout>note</layout>
</layouts>
</type>

<!-- containment rules -->
<type id="Folder">
<subtypes>
<type>Sample</type>
</subtypes>
</type>
<type id="Workspace">
<subtypes>
<type>Sample</type>
</subtypes>
</type>

</extension>
</component>

Document, form and listing views

The views on documents, the forms to create or edit them, how lists of documents are presented, all that can be
changed in a Nuxeo application, to make sure the information displayed are meaningful. To enable the
customization of how documents, forms and listings are presented, Nuxeo EP-based application use layouts and
content views.

In this section:

® | ayouts (forms and views)

® Manage layouts

® Field binding and expressions
Document layouts
Layout display
Standard widget types
Custom layout and widget templates
Custom widget types

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 102

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

® Generic layout usage

® | ayout how-tos

® Widgets known limitations
* Content views

® Custom Page Providers

® Page Providers without Content Views
® Views on documents

Layouts (forms and views)

Last night a widget saved my life
— ui:Indeep
Layouts are used to generate pages rendering from an xml configuration.

In a document oriented perspective, layouts are mostly used to display a document metadata in different use cases:
present a form to set its schemas fields when creating or editing the document, and present these fields values
when simply displaying the document. A single layout definition can be used to address these use cases as it will be
rendered for a given document and in a given mode.

In this chapter we will see how to define a layout, link it to a document type, and use it in XHTML pages.

Online demo

You might want to check out the Layout Showcase for a demo.

Layouts

A layout is a group of widgets that specifies how widgets are assembled and displayed. It manages widget rows and
has global control on the rendering of each of its widgets.

Widgets
There's a widget in the closet
— R. Kellise

A widget defines how one or several fields from a schema will be presented on a page. It can be displayed in
several modes and holds additional information like for instance the field label. When it takes user entries, it can
perform conversion and validation like usual JSF components.

Widget types

A widget definition includes the mention of its type. Widget types make the association between a widget definition
and the JSF component tree that will be used to render it in a given mode.

Modes
Both layouts and widgets have modes.

The layout modes can be anything although some default modes are included in the application: create, edit, view,
listing and search. Since 5.4.2, some new default modes are included: bulkEdit, header, csv, pdf and plain.

The widget modes are more restricted and widget types will usually only handle two modes: edit and view. The

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 103

http://doc.nuxeo.com/x/GATF
http://showcase.nuxeo.com/layout

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

widget mode is computed from the layout mode following this rule: if the layout is in mode create, edit or search, the
widget will be in edit mode. Otherwise the widget will be in view mode. Since 5.4.2, new widget modes have been
added: pdf, csv and plain. 'plain' is the new default mode, as it is very close to the view mode except it's not
supposed to include HTML tags.

© Since Nuxeo 5.4, the mapping between the layout mode and the widget more is more loose: if
the layout is in mode create, edit, bulkEdit or search, or if its mode starts with one of these mode
names, the widget will be in edit mode. Otherwise the widget will be in the default mode ('view'
before 5.4.1, and 'plain' after).

Here is a table of the default mappings:

Layout Mode Default Widget Mode
create”, edit*, search*, bulkEdit* edit

view*, summary* view

csv* csv

pdf* pdf

any other value 'view' before 5.4.2, 'plain' after

It is possible to override this behavior in the widget definition, and state that, for instance, whatever the layout mode,
the widget will be in view mode so that it only displays read-only values. The pseudo-mode "hidden" can also be
used in a widget definition to exclude this widget from the layout in a given mode.

The pseudo mode "any" is only used in layouts and widgets definitions to set up default values.

The following pages explain how to work with layouts:

Manage layouts
Field binding and expressions

Document layouts

Layout display

Standard widget types

Custom layout and widget templates
Custom widget types

Generic layout usage

® |ayout how-tos
* Widgets known limitations

Manage layouts

Custom layouts can be contributed to the web layout service, using its extension point. The layout definition is then
available through the service to control how it will be displayed in a given mode.

Some JSF tags have been added to the Nuxeo ECM layout tag library to make then easily available from an XHTML
page.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 104

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

In this section

Layout registration
Layout definition
Widget definition
Listing layout definition

EL expressions in layouts and widgets

Layout registration

Layouts are registered using a regular extension point on the Nuxeo ECM layout service. Here is a sample
contribution.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 105

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.forms.layouts.webapp">

<extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
point="layouts">

<layout name="heading">
<templates>
<template mode="any">/layouts/layout_default_template.xhtml</template>
</templates>
<rows>
<row>
<widget>title</widget>
</row>
<row>
<widget>description</widget>
</row>
</rows>
<widget name="title" type="text">
<labels>
<label mode="any">label.dublincore.title</label>
</labels>
<translated>true</translated>
<fields>
<field>dc:title</field>
</fields>
<properties widgetMode="edit">
<property name="required">true</property>
</properties>
</widget>
<widget name="description" type="textarea">
<labels>
<label mode="any">label.dublincore.description</label>
</labels>
<translated>true</translated>
<fields>
<field>dc:description</field>
</fields>
</widget>
</layout>

</extension>

</component>

Layout definition

The above layout definition is used to display the title and the description of a document. Here are its properties:

® name: string used as an identifier. In the example, the layout name is "heading".

® templates: list of templates to use for this layout global rendering. In the example, the layout template in any
mode is the XHTML file at"/layouts/layout default template.xhtml". Please refer to section
about custom layout templates for more information.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 106

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

® rows: definition about what widgets will have to be displayed on this row. Each row can hold several widgets,
and an empty widget tag can be used to control the alignment. The widget has to match a widget name given
in this layout definition.
In the example, two rows have been defined, the first one will hold the "title" widget, and the second one will
hold the "description" widget.

® widget: a layout definition can hold any number of widget definitions. If the widget is not referenced in the
rows definition, it will be ignored. The widget is searched in the global widget registry before being ignored.
This is a convenient way to share widget definitions between layouts. Please refer the widget definition
section.

Widget definition

Two widget definitions are presented on the above example. Let's look into the "title" widget and present its
properties:

® name: string used as an identifier in the layout context. In the example, the widget name is "title".

* type: the widget type that will manage the rendering of this widget. In this example, the widget type is "text".
This widget type is a standard widget types, more information about widget types is available here.

® labels: list of labels to use for this widget in a given mode. If no label is defined in a specific mode, the label
defined in the "any" mode will be taken as default. In the example, a single label is defined for any mode to
the "label.dublicore.title" message. If no label is defined at all, a default label will be used following the
convention: "label.widget.[layoutName].[widgetName]".

® translated: string representing a boolean value ("true" or "false") and defaulting to "false". When set as
translated, the widget labels will be treated as messages and displayed translated. In the example, the
"label.dublincore.title" message will be translated at rendering time. Default is true.

* fields: list of fields that will be managed by this widget. In the example, we handle the field "dc:title" where
"dc" is the prefix for the "dublincore" schema. If the schema you would like to use does not have a prefix, use
the schema name instead. Note that most of standard widget types only handle one field.

Side note: when dealing with an attribute from the document that is not a metadata, you can use the property
name as it will be resolved like a value expression of the form #document.attribute}.

® properties: list of properties that will apply to the widget in a given mode. Properties listed in the "any" mode
will be merged with properties for the specific mode. Depending on the widget type, these properties can be
used to control what JSF component will be used and/or what attributes will be set on these components. In
standard widget types, only one component is used given the mode, and properties will be set as attributes
on the component. For instance, when using the "text" widget type, every property accepted by the
"<h:inputText />" tag can be set as properties on "edit" and "create" modes, and every property accepted by
the "<h:outputText />" tag can be set as properties. Properties can also be added in a given widget mode.

Additional properties can be set on a widget:

® helpLabels: list that follows the same pattern as labels, but used to set help labels.

* widgetModes: list of local modes used to override the local mode (from the layout).

* subWidgets: list of widget definitions, as the widget list, used to describe sub widgets use to help the
configuration of some complex widget types.

Here is a more complex layout contribution that shows the syntax to use for these additional properties:

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.forms.layouts.webapp">

<!-- WARNING: this extension point is only available from versions 5.1.7 and 5.2.0
-—

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 107

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
point="widgets">

<!-- global definition of a widget so that it can be used
in several layouts -->
<widget name="description" type="textarea">
<labels>
<label mode="any">description</label>
</labels>
<translated>true</translated>
<fields>
<field>dc:description</field>
</fields>
<properties widgetMode="edit">
<property name="styleClass">dataInputText</property>
</properties>
</widget>

</extension>

<extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
point="layouts">

<layout name="complex">

<templates>
<template mode="any">/layouts/layout_default_template.xhtml</template>
</templates>
<rows>
<row>
<widget>identifier</widget>
</row>
<row>
<!-- reference a global widget -->
<widget>description</widget>
</row>
</rows>
<widget name="identifier" type="text">
<labels>
<label mode="any">label.dublincore.title</label>
</labels>
<translated>true</translated>
<fields>
<field>uid:uid</field>
</fields>
<widgetModes>
<!-- not shown in create mode -->
<mode value="create">hidden</mode>
</widgetModes>
<properties widgetMode="edit">
<!-- required in widget mode edit -->
<property name="required">true</property>
</properties>
<properties mode="view">
<!-- property applying in view mode -->
<property name="styleClass">cssClass</property>
</properties>
</widget>
</layout>

Copyright © 2010-2013 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

108

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

</extension>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

109

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

</component>

Listing layout definition

Layouts can also be used to render table rows, as long as their mode (or their widgets mode) do not depend on the
iteration variable, as the layout is built when building the JSF tree (too early in the JSF construction mechanism for

most iteration variables).

For this usage, columns/column aliases have been defined because they are more intuitive when describing a row in
the layout. The layout 1layout listing template.xhtml makes it possible to define new properties to take

care of when rendering the table header or columns.

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.forms.layouts.webapp.listing">

<extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
point="widgets">

<widget name="listing_selection_box_with_current_document"
type="listing_selection_box_with_current_document">
<labels>
<label mode="any"></label>
</labels>
<fields>
<field>selected</field>
<field>data.ref</field>
</fields>
</widget>

<widget name="listing_icon_type" type="listing_icon_type">

<labels>
<label mode="any"></label>
</labels>
<fields>
<field>data</field>

<field>data.ref</field>
<field>data.type</field>
<field>data.folder</field>
</fields>
</widget>

<widget name="listing_ title_link" type="listing_title_link">

<labels>
<label mode="any">label.content.header.title</label>
</labels>
<translated>true</translated>
<fields>
<field>data</field>

<field>data.ref</field>
<field>data.dc.description</field>
<field>data.file.content</field>
<field>data.file.filename</field>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 110

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

</fields>
<properties mode="any">
<property name="file_ property_name">file:content</property>
<property name="file_schema">file</property>
</properties>
</widget>

<widget name="listing modification_date" type="datetime">
<labels>
<label mode="any">label.content.header.modified</label>
</labels>
<translated>true</translated>
<fields>
<field>data.dc.modified</field>
</fields>
<properties widgetMode="any">
<property name="pattern">#{nxu:basicDateAndTimeFormater ()}</property>
</properties>
</widget>

</extension>

<extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
point="layouts">

<layout name="document_listing_sample">
<templates>
<template mode="any">/layouts/layout_listing_template.xhtml</template>
</templates>
<properties mode="any">
<property name="showListingHeader">true</property>
<property name="showRowEvenOddClass">true</property>
</properties>
<columns>
<column>
<properties mode="any">
<property name="isListingSelectionBoxWithCurrentDocument">
true
</property>
<property name="useFirstWidgetLabelAsColumnHeader">false</property>
<property name="columnStyleClass">iconColumn</property>
</properties>
<widget>listing_selection_box_with_current_document</widget>
</column>
<column>
<properties mode="any">
<property name="useFirstWidgetLabelAsColumnHeader">false</property>
<property name="columnStyleClass">iconColumn</property>
</properties>
<widget>listing_icon_type</widget>
</column>
<column>
<properties mode="any">
<property name="useFirstWidgetLabelAsColumnHeader">true</property>
<property name="sortPropertyName">dc:title</property>
</properties>
<widget>listing_title_link</widget>
</column>
<column>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 111

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<properties mode="any">
<property name="useFirstWidgetLabelAsColumnHeader">true</property>
<property name="sortPropertyName">dc:modified</property>
</properties>
<widget>listing_modification_date</widget>
</column>
</columns>
</layout>

</extension>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

112

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

</component>

Here widgets have been defined globally, as well as their types. New widget types, or simply widget templates, can
be made taking example on the existing ones, see the layouts-listing-contrib.xml.

More information about how to write a listing layout template can be read in chapter about Custom layout and widget
templates. If you need to define listing layouts that handle column selection, please refer to the Advanced search ch
apter as it gives a complete example on how this is achieved for this feature.

EL expressions in layouts and widgets

Some variables are made available to the EL context when using layout or widget templates.

® Inside the layout context, the following global variables are available: value (and equivalent document) +
levels and changing "value" context

® layoutValue: represents the value (evaluated) passed in a "nxl:layout" or "nxl:documentLayout" tag
attributes.

® layoutMode: represents the mode (evaluated) passed in a "nxl:layout" or "nxl:documentLayout" tag
attributes.

® value: represents the current value as manipulated by the tag: in a "nxl:layout" tag, it will represent the
value resolved from the "value" tag attribute ; in a "nxl:widget" tag, it will represent the value resolved
from the "value" tag attribute. This value will work with field information passed in the widget definition
to resolve fields and subfields. The variable "document" is available as an alias, although it does not
always represent a document model (as layouts can apply to any kind of object).

® value_n: represents the current value as manipulated by the tag, as above, excepts it includes the
widget level (value_0, value_1, etc...). This is useful when needing to use the value as defined in a
parent widget, for instance.

Inside a layout template, the variable "layout" is available, it make it possible to access the generated layout
object.

® |Inside a "nxl:layoutRow", or equivalent "nxl:layoutColumn" tag, the variables "layoutRow" and
"layoutRowIndex" are available to access the generated layout row, and its index within the iteration over
rows. The equivalent "layoutColumn" and "layoutColumnindex" variables are also available.

® Inside a "nxl:layoutRowWidget", or equivalent "nxl:layoutColumn" widget, the variables "widget" and
"widgetindex" are available to access the generated current widget, and its index in the row or column. The
variables added the level information are also available: widget_0, widget_1, ... and widgetindex_0,
widgetindex_1... This is useful when needed to use the widget as defined in a higher level.

* Inside a widget template, some "field_n" variables are available: "field_0" represents the resolved first field
value, "field_1" the second value, etc...
Since Nuxeo 5.3.1, the variable "field" is available as an alias to "field_0".
Since Nuxeo 5.3.2, the widget properties are also exposed for easier resolution of EL expressions: for
instance, the variable "widgetProperty_onchange" represents the resolved property with name "onchange".
Since Nuxeo 5.6, the variable "fieldOrValue" is also available, in case the widget should be bound to the
layout value (or parent widget value) when field definitions are empty.

The complete reference is available at http://community.nuxeo.com/api/nuxeo/release-5.6/tlddoc/nxl/tld-summary.ht
ml.

Related topics

Manage layouts

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 113

http://doc.nuxeo.com/x/GATF
https://github.com/nuxeo/nuxeo-jsf/blob/5.6-SNAPSHOT/nuxeo-platform-webapp-base/src/main/resources/OSGI-INF/layouts-listing-contrib.xml
http://community.nuxeo.com/api/nuxeo/release-5.6/tlddoc/nxl/tld-summary.html
http://community.nuxeo.com/api/nuxeo/release-5.6/tlddoc/nxl/tld-summary.html

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Custom layout and widget templates

Standard widget types

Layout how-tos
Field binding and expressions

This chapter explains how field bindings are resolved, what is their purpose, and what variables are available for
expressions depending on the context.

& Work still in progress!

In this section

® Field bindings
® FE| expressions in layouts and widgets

Field bindings

The final binding used by the JSF component is built by the layout system at runtime so that it applies to the value
you give it in the template defining the nxl:layout tag.

For instance, when using:

<nxl:layout name="myLayoutName" mode="view" value="#{currentDocument}" />

where the layout contains a widget mapped to the "dc:title" field, when building the corresponding JSF view
(dynamically via facelets), the layout service will build the value expression #{currentDocument.dc.title} (or a similar
expression achieving this) and give it to the JSF component that would be usually used for a h:outputText JSF tag.

Using the field property means that you expect the layout to do that, and that's one of the main feature of the layout
system: so if you'd like to reuse the same widget but with a different binding, you're kind of breaking standard usage.

That being said, you can run into use cases where changing just this binding would make your life easier. You may
want to consider defining a similar widget bound to another field, and hide each of them in the resulting layout
depending on a custom condition (that's one option).

Another option would be to override this mapping by defining the "value" property instead (as it's the same property
name on the final JSF component, it'll be taken into account instead.

EL expressions in layouts and widgets

Some variables are made available to the EL context when using layout or widget templates.

* Inside the layout context, the following global variables are available: value (and equivalent document) +
levels and changing "value" context

® layoutValue: represents the value (evaluated) passed in a "nxl:layout" or "nxl:documentLayout" tag
attributes.

® layoutMode: represents the mode (evaluated) passed in a "nxl:layout" or "nxl:documentLayout" tag
attributes.

® value: represents the current value as manipulated by the tag: in a "nxl:layout" tag, it will represent the
value resolved from the "value" tag attribute ; in a "nxl:widget" tag, it will represent the value resolved

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 114

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

from the "value" tag attribute. This value will work with field information passed in the widget definition
to resolve fields and subfields. The variable "document" is available as an alias, although it does not
always represent a document model (as layouts can apply to any kind of object).

® value_n: represents the current value as manipulated by the tag, as above, excepts it includes the
widget level (value_0, value_1, etc...). This is useful when needing to use the value as defined in a
parent widget, for instance.

Inside a layout template, the variable "layout" is available, it make it possible to access the generated layout
object.

® Inside a "nxl:layoutRow", or equivalent "nxl:layoutColumn" tag, the variables "layoutRow" and
"layoutRowIndex" are available to access the generated layout row, and its index within the iteration over
rows. The equivalent "layoutColumn" and "layoutColumnindex" variables are also available.

® Inside a "nxl:layoutRowWidget", or equivalent "nxl:layoutColumnWidget" tag, the variables "widget" and
"widgetindex" are available to access the generated current widget, and its index in the row or column. The
variables added the level information are also available: widget_0, widget_1, ... and widgetindex_0,
widgetindex_1... This is useful when needed to use the widget as defined in a higher level.

* Inside a widget template, some "field_n" variables are available: "field_0" represents the resolved first field
value, "field_1" the second value, etc...
Since Nuxeo 5.3.1, the variable "field" is available as an alias to "field_0".
Since Nuxeo 5.3.2, the widget properties are also exposed for easier resolution of EL expressions: for
instance, the variable "widgetProperty_onchange" represents the resolved property with name "onchange".
Since Nuxeo 5.6, the variable "fieldOrValue" is also available, in case the widget should be bound to the
layout value (or parent widget value) when field definitions are empty.

The complete reference is available at http://community.nuxeo.com/api/nuxeo/release-5.6/tlddoc/nxl/tld-summary.ht

ml.

Related topics

Manage layouts

Custom layout and widget templates

Standard widget types

Layout how-tos
Document layouts

Layouts can be linked to a document type definition by specifying the layout names:

<layouts mode="any">
<layout>heading</layout>
<layout>note</layout>
</layouts>

Layouts are defined in a given mode; layouts in the "any" mode will be used as default when no layouts are given in
specific modes.

Since 5.2.GA, it is possible to merge layouts when redefining the document type, adding a property append="true":

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 115

http://doc.nuxeo.com/x/GATF
http://community.nuxeo.com/api/nuxeo/release-5.6/tlddoc/nxl/tld-summary.html
http://community.nuxeo.com/api/nuxeo/release-5.6/tlddoc/nxl/tld-summary.html

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<layouts mode="any" append="true">
<layout>newLayout</layout>
</layouts>

Since 5.3.1, a new mode "listing" can be used for folderish documents. Their default content will use the given
layouts to make it possible to switch between the different presentations. Since 5.4.0, this configuration is
deprecated as it is now possible to configure it through Content Views.

Some default listing layouts have been defined, the one used by default when no layout is given in this mode is
"document_listing". To remove the layouts defined by default on a document type, override it without listing any
modes.

<layouts mode="listing">
</layouts>

<layouts mode="listing">
<layout>document_listing</layout>
<layout>document_listing_compact_2_columns</layout>
<layout>document_icon_2_ columns</layout>

</layouts>

Layouts with a name that ends with "2_columns" will be displayed on two columns by default. The layout name will
be used as a message key for the selector label.

Layout display

Layouts can be displayed thanks to a series a JSF tags that will query the web layout service to get the layout
definition and build it for a given mode.

For instance, we can use the documentLayout tag to display the layouts of a document:

<div xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:nxl="http://nuxeo.org/nxforms/layout">
<nxl:documentLayout mode="view" value="#{currentDocument}" />
</div>

Since 5.4.2, it is possible to make a distinction between the layouts defined in a given mode on the document, and
the mode used to render layouts, for instance:

<nxl:documentLayout documentMode="header" mode="view"
value="#{currentDocument}" defaultLayout="document_header"
includeAnyMode="false" />

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 116

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

We can also display a specific layout for a document, even if it is not specified in the document type definition:

<div xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:nxl="http://nuxeo.org/nxforms/layout">
<nxl:layout name="heading" mode="view" value="#{currentDocument}" />
</div>

You can include a layout in a dataTable tag, but cannot make its mode depend on the iteration
variable. If you need to do so, recommendation is to use the c:forEach tag and handle all the
<table>, <tr>, <td>... tags by yourself.

For instance, here is a sample display of a listing layout. The layout template is configured to display table rows. It
will display header rows when the parameter "showListingHeader" is true.

<table class="dataOutput">
<c:forEach var="row" items="#{documents.rows}" varStatus="layoutListingStatus">
<c:set var="showListingHeader" value="#{layoutListingStatus.index == 0}" />
<nxl:layout name="#{layoutName}" value="#{row}" mode="view"
selectedColumns="#{selectedResultLayoutColumns}" />
</c:forEach>
</table>

Please refer to the tag library documentation available at http://community.nuxeo.com/api/nuxeo/release-5.6/tlddoc/
nxl/tld-summary.html.

Standard widget types
A series of widget types has been defined for the most generic uses cases.

Please refer to the tag library documentation available at http://community.nuxeo.com/api/nuxeo/5.6/tlddoc/ for
Nuxeo JSF tags.

text

The text widget displays an input text in create or edit mode, with additional message tag for errors, and a regular
text output in any other mode. Widgets using this type can provide properties accepted on a <h:inputText /> tag in
create or edit mode, and properties accepted on a <h:outputText /> tag in other modes.

View online demo: http://layout.demo.nuxeo.org/nuxeo/layoutDemo/textWidget.

int

The int widget displays an input text in create or edit mode, with additional message tag for errors, and a regular text
output in any other mode. It uses a number converter. Widgets using this type can provide properties accepted on a
<h:inputText /> tag in create or edit mode, and properties accepted on a <h:outputText /> tag in other modes.

View online demo: http://layout.demo.nuxeo.org/nuxeo/layoutDemo/intWidget.

secret

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 117

http://doc.nuxeo.com/x/GATF
http://community.nuxeo.com/api/nuxeo/release-5.6/tlddoc/nxl/tld-summary.html
http://community.nuxeo.com/api/nuxeo/release-5.6/tlddoc/nxl/tld-summary.html
http://community.nuxeo.com/api/nuxeo/5.6/tlddoc/
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/textWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/intWidget

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

The secret widget displays an input secret text in create or edit mode, with additional message tag for errors, and
nothing in any other mode. Widgets using this type can provide properties accepted on a <h:inputSecret /> tag in
create or edit mode.

View online demo: http://layout.demo.nuxeo.org/nuxeo/layoutDemo/secretWidget.

In this section

—+
—-

ex

int

ecret

textarea

datetime

template

file

htmltext
selectOneDirectory
selectManyDirectory
checkbox

list

complex

container

Others

0 =

textarea

The textarea widget displays a textarea in create or edit mode, with additional message tag for errors, and a regular
text output in any other mode. Widgets using this type can provide properties accepted on a <h:inputTextarea /> tag
in create or edit mode, and properties accepted on a <h:outputText /> tag in other modes.

View online demo: http://layout.demo.nuxeo.org/nuxeo/layoutDemo/textareaWidget.

datetime

The datetime widget displays a JavaScript calendar in create or edit mode, with additional message tag for errors,
and a regular text output in any other mode. It uses a date time converter. Widgets using this type can provide
properties accepted on a <nxu:inputDatetime /> tag in create or edit mode, and properties accepted on a
<h:outputText /> tag in other modes. The converter will also be given these properties.

View online demo: http://layout.demo.nuxeo.org/nuxeo/layoutDemo/datetimeWidget.

template

The template widget displays a template content whatever the mode. Widgets using this type must provide the path
to this template; this template can check the mode to adapt the rendering.

Information about how to write a template is given in the custom widget template section.
file

The file widget displays a file uploader/editor in create or edit mode, with additional message tag for errors, and a
link to the file in other modes. Widgets using this type can provide properties accepted on a <nxu:inputFile /> tag in
create or edit mode, and properties accepted on a <nxu:outputFile /> tag in other modes.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 118

http://doc.nuxeo.com/x/GATF
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/secretWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/textareaWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/datetimeWidget

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

View online demo: http://layout.demo.nuxeo.org/nuxeo/layoutDemo/fileWidget.

htmlitext

The htmitext widget displays an HTML text editor in create or edit mode, with additional message tag for errors, and
a regular text output in other modes (without escaping the text). Widgets using this type can provide properties
accepted on a <nxu:editor /> tag in create or edit mode, and properties accepted on a <nxu:outputText /> tag in
other modes.

View online demo: http://layout.demo.nuxeo.org/nuxeo/layoutDemo/htmitextWidget.

selectOneDirectory

The selectOneDirectory widget displays a selection of directory entries in create or edit mode, with additional
message tag for errors, and the directory entry label in other modes. Widgets using this type can provide properties
accepted on a <nxd:selectOneListbox /> tag in create or edit mode, and properties accepted on a
<nxd:directoryEntryOutput /> tag in other modes.

View online demo: http://layout.demo.nuxeo.org/nuxeo/layoutDemo/selectOneDirectoryWidget.

selectManyDirectory

The selectManyDirectory widget displays a multi selection of directory entries in create or edit mode, with additional
message tag for errors, and the directory entries labels in other modes. Widgets using this type can provide
properties accepted on a <nxd:selectManyListbox /> tag in create or edit mode, and properties accepted on a
<nxd:directoryEntryOutput /> tag in other modes.

View online demo: http://layout.demo.nuxeo.org/nuxeo/layoutDemo/selectManyDirectoryWidget.

checkbox

The checkbox widget displays a checkbox in create, edit and any other mode, with additional message tag for
errors. Widgets using this type can provide properties accepted on a <h:selectBooleanCheckbox /> tag in create,
edit mode, and other modes.

View online demo: http://layout.demo.nuxeo.org/nuxeo/layoutDemo/checkboxWidget.

list

The list widget displays an editable list of items in create or edit mode, with additional message tag for errors, and
the same list of items in other modes. Items are defined using sub widgets configuration. This actually a template
widget type whose template uses a <nxu:inputList /> tag in edit or create mode, and a table iterating over items in
other modes. It also offers alternative renderings.

View online demo: http://layout.demo.nuxeo.org/nuxeo/layoutDemo/listWidget

complex

The complex widget displays its subwidgets, binding them to a map-like structure suitable for complex field types
definitions. It offers different kinds of renderings and is available since Nuxeo 5.4.2.

View online demo: http://layout.demo.nuxeo.org/nuxeo/layoutDemo/complexWidget

container

The container widget is a "decorative" widget, used to control rendering of its subwidgets. It's available since Nuxeo

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 119

http://doc.nuxeo.com/x/GATF
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/fileWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/htmltextWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/selectOneDirectoryWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/selectManyDirectoryWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/checkboxWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/listWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/complexWidget

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

5.6 and is used on the default summary layout.

View online demo: http://layout.demo.nuxeo.org/nuxeo/layoutDemo/containerWidget

Others

All widgets types available on your Nuxeo application are visible at http://localhost:8080/nuxeo/site/layout-manager/
widget-types

Related topics

Manage layouts

Custom layout and widget templates

Standard widget types

Layout how-tos
Custom layout and widget templates
Some templating features have been made available to make it easier to control the layouts and widgets rendering.

In this section

Custom layout template

Listing template
Custom summary template

Custom widget template

Builtin templates to handle complex properties
® List widget template
* Complex widget template
® |ists of lists

Custom layout template

A layout can define an XHTML template to be used in a given mode. Let's take a look at the default template
structure.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 120

http://doc.nuxeo.com/x/GATF
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/containerWidget
http://localhost:8080/nuxeo/site/layout-manager/widget-types
http://localhost:8080/nuxeo/site/layout-manager/widget-types

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<f:subview
xmlns:c="http://java.sun.com/jstl/core"
xmlns: f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:ui="http://java.sun.com/jsf/facelets"”
xmlns:nxl="http://nuxeo.org/nxforms/layout"”
xmlns:nxu="http://nuxeo.org/nxweb/util"”
id="#{layout.id}"
styleClass="#{layoutProperty_styleClass}">

<c:set var="isEditMode" value="#{nxl:isBoundToEditMode (layout.mode)}" />

<table class="dataInput">
<tbody>

<nx1l:layoutRow>
<tr class="#{layoutRow.properties|['styleClass']}">
<nxl:layoutRowWidget>
<nxu:set var="fieldColspan"
value="#{nxu:test (layoutRow.size==1, 3*layout.columns-2, 1) +
nxu:test (widget.handlingLabels, 1, 0)}">
<c:if test="#{not widget.handlingLabels}">
<td class="labelColumn">
<ui:include src="/widgets/incl/widget_label_template.xhtml" />
</td>
</c:if>
<td class="fieldColumn" colspan="#{fieldColspan}">
<nxl:widget widget="#{widget}" value="#{value}" />
</ta>
</nxu:set>
</nx1l:layoutRowWidget>
</tr>
</nx1l:layoutRow>

</tbody>
</table>

<script>
jQuery (document) .ready (function() {
jQuery (" .widgetHelpLabel").tooltip({relative: true, position: 'bottom center'});

})i

</script>

</f:subview>

This template is intended to be unused in any mode, so the layout mode is checked to provide a different rendering
in "edit", "create", "view" modes and other modes.

When this template is included in the page, several variables are made available:

® |ayout: the computed layout value ; its mode and number of columns can be checked on it.
® value or document: the document model (or whatever item used as value).

The layout system integration using facelets features requires that iterations are performed on the layout rows and

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 121

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

widgets. The <nxl:layoutRow> and <nxl:layoutRowWidget /> trigger these iterations. Inside the layoutRow tag, two
more variables are made available: layoutRow and layoutRowlndex. Inside the layoutRowWidget, two more
variables are made available: widget and widgetindex.

These variables can be used to control the layout rendering. For instance, the default template is the one applying
the "required" style on widget labels, and translating these labels if the widget must be translated. It also makes sure
widgets on the same rows are presented in the same table row.

Listing template

This layout intends to render columns within a table: each line will be filled thanks to a layout configuration. It is only
used in view mode. Let's take a look at the default listing template structure.

<f:subview
xmlns:c="http://java.sun.com/jstl/core"
xmlns: f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:nxl="http://nuxeo.org/nxforms/layout”
xmlns:nxu="http://nuxeo.org/nxweb/util"”
xmlns:nxd="http://nuxeo.org/nxweb/document"”
xmlns:a4j="https://ajax4jsf.dev.java.net/ajax"
id="#{layout.id}">

<c:if test="false">
Layout template applying to an item instance of
PageSelections<DocumentModel> named "documents"”

Other needed parameters are:
- provider: instance of a PageProvider<DocumentModel> to handle sort
- layoutListingStatus: iteration status, used to print table header
matching widget label.
</c:if>

<nxu:set var="hasSeveralSorts"
value="#{provider.getSortInfos().size() > 1}"
cache="true">

<c:if test="#{showListingHeader and layout.properties.showListingHeader}">
<thead>
<tr>
<nxl:layoutColumn>
<th>
<c:choose>
<c:when test="#{layoutColumn.properties.isListingSelectionBox}">
<h:selectBooleanCheckbox id="#{layoutColumn.widgets[0O].name}_header"

title="#{messages['tooltip.content.select.all']}"
value="#{documents.selected}">
<a4j:support event="onclick"

action="#{documentListingActions.processSelectPage(contentView.name,
contentView.selectionListName, documents.selected)}"”
onclick="javascript:handleAllCheckBoxes ('#{contentView.name}',
this.checked)"
reRender="ajax_selection_buttons" />
</h:selectBooleanCheckbox>
</c:when>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 122

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<c:when
test="#{layoutColumn.properties.isListingSelectionBoxWithCurrentDocument}">
<h:selectBooleanCheckbox id="#{layoutColumn.widgets[0].name}_header"

title="#{messages['tooltip.content.select.all']}"

value="#{documents.selected}">

<a4j:support event="onclick"

onclick="javascript:handleAllCheckBoxes ('#{contentView.name}',

this.checked)"

action="#{documentListingActions.checkCurrentDocAndProcessSelectPage (contentView.nam
e, contentView.selectionListName, documents.selected, currentDocument.ref)}"
reRender="ajax_selection_buttons" />
</h:selectBooleanCheckbox>
</c:when>
<c:when
test="#{layoutColumn.properties.useFirstWidgetLabelAsColumnHeader}">
<c:choose>
<c:when test="#{provider.sortable and !empty
layoutColumn.properties.sortPropertyName} ">
<nxu:set var="ascIndex"

value="#{provider.getSortInfoIndex(layoutColumn.properties.sortPropertyName, true)}"
cache="true">
<nxu:set var="descIndex"

value="#{provider.getSortInfoIndex(layoutColumn.properties.sortPropertyName,
false)}"

cache="true">

<h:commandLink immediate="true"

action="#{provider.setSortInfo(layoutColumn.properties.sortPropertyName,
nxu:test(ascIndex != -1, false, true), true)}"
id="#{layoutColumn.widgets[0] .name}_header_sort">
<h:outputText value="#{layoutColumn.widgets[O].label}"
rendered="#{!layoutColumn.widgets[0] .translated}" />
<h:outputText
value="4#{messages[layoutColumn.widgets[0].label]}"
rendered="4#{layoutColumn.widgets[0] .translated}" />

</h:commandLink>
<f:verbatim>&nbsp;</f:verbatim>
<c:if test="#{ascIndex != -1}">

<h:commandLink immediate="true"

action="#{provider.setSortInfo(layoutColumn.properties.sortPropertyName, false,
false)}"
id="#{layoutColumn.widgets[0] .name}_ header_sort_desc">
<h:graphicImage value="/icons/sort_selected_down.png" />
<c:if test="#{hasSeveralSorts}">
#{ascIndex + 1}
</c:if>
</h:commandLink>
</c:if>
<c:if test="#{descIndex != -1}">
<h:commandLink immediate="true"

action="#{provider.setSortInfo(layoutColumn.properties.sortPropertyName, true,
false)}"
id="#{layoutColumn.widgets[0] .name}_ header_sort_asc">
<h:graphicImage value="/icons/sort_selected_up.png" />

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 123

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<c:if test="#{hasSeveralSorts}">
#{descIndex + 1}
</c:if>
</h:commandLink>
</c:if>
<c:if test="#{ascIndex == -1 and descIndex == -1}">
<h:commandLink immediate="true"
action="#{provider.addSortInfo(layoutColumn.properties.sortPropertyName, true)}"
id="#{layoutColumn.widgets[0] .name} header_sort_add">
<h:graphicImage value="/icons/sort_down.png" />
</h:commandLink>
</c:if>
</nxu:set>
</nxu:set>
</c:when>
<c:otherwise>
<h:outputText value="#{layoutColumn.widgets[O].label}"
rendered="#{!layoutColumn.widgets[0] .translated}" />
<h:outputText value="#{messages[layoutColumn.widgets[0].label]}"
rendered="#{layoutColumn.widgets[0].translated}" />
</c:otherwise>
</c:choose>
</c:when>
</c:choose>
</th>
</nxl:layoutColumn>
<c:if test="#{provider.sortable}">
<th>
<h:graphicImage value="/icons/lightbulb.png"
onmouseover="tooltip.show('#{messages|['contentview.sort.help']}', 200,
'topleft');"
onmouseout="tooltip.hide();" />
</th>
</c:if>
</tr>
</thead>
</c:if>

</nxu:set>

<c:set var="trStyleClass" value="#{nxu:test(layoutListingStatus.index%2 ==0,
'dataRowEven', 'dataRowOdd')}" />
<tr class="#{nxu:test(layout.properties.showRowEvenOddClass, trStyleClass, '')}">
<nxl:layoutColumn>
<td class="#{layoutColumn.properties.columnStyleClass}">
<nxl:layoutColumnWidget>
<nxl:widget widget="#{widget}" value="#{value}" />
<c:if test="#{layoutColumn.size > 1 and layoutColumn.size > widgetIndex + 1
and widgetIndex > 0}">

</c:if>
</nx1l:layoutColumnWidget>
</td>
</nx1l:layoutColumn>
<c:if test="#{provider.sortable}">
<td class="iconColumn">
</td>
</c:if>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 124

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

</tr>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 125

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

</f:subview>

As you can see, this layout make it possible to use the first defined widget in a given column to print a label, and
maybe translate it. It also relies on properties defined in the layout or layout column properties to handle selection,
column style class, sorting on the provider,...

Any custom template can be defined following this example to handle additional properties to display on the final
table header and columns.

Custom summary template

The summary uses a custom template to use "div" elements instead of tables, more appropriate to a dashboard-like
view.

Since version 5.6, it uses a "grid" rendering allowing fine-grained control over the place used by widgets. It
combines the following layout template with the use of the standard "container" widget type. The container widgets
pile up any number of widgets displaying information about the document metadata, its state, relations, publications,

etc...

<f:subview
xmlns:c="http://java.sun.com/jstl/core"
xmlns: f="http://java.sun.com/jsf/core"
xmlns:nxl="http://nuxeo.org/nxforms/layout
id="#{layout.id}">

<c:if test="false">
Handles grid layouts, using style classes defined by row properties.
</c:if>

<div class="gridContainer">
<nxl:layoutRow>
<div class="gridRow">
<nxl:layoutRowWidget>
<c:set var="gridStyleClassProp" value="nxl_gridStyleClass_#{widgetIndex}"

/>
<div class="gridBox #{layoutRow.properties[gridStyleClassProp]}">
<nxl:widget widget="#{widget}" value="#{value}" />
</div>
</nxl:layoutRowWidget>
</div>
</nx1l:layoutRow>
</div>

</f:subview>

When using this layout template, the layout definition will use properties defined on rows to allow more or less place
to the widgets. Here is the default summary definition:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 126

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/NXDOC/Standard+widget+types#Standardwidgettypes-container

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<layout name="grid_summary_layout">
<templates>
<template mode="any">
/layouts/layout_grid_template.xhtml
</template>
</templates>
<rows>
<row>
<properties mode="any">
<property name="nxl_gridStyleClass_0">gridStyle7</property>
<property name="nxl_gridStyleClass_1">gridStyle5</property>
</properties>
<widget>summary_left_panel</widget>
<widget>summary_right_panel</widget>
</row>
</rows>
</layout>

Here the first widget, containing widgets to display on the left part of the page, will take approximatively 60% of the
page. Here is a diagram to help you design layouts using grids:

gridStylel2
gridStyle6 gridStyle6
gridStyled gridStyled gridStyled
gridStyle7 gridStyleb
gridStyleb gridStyle7
gridStyle3 gridStyle3 gridStyle3 gridStyle3

gridStyle2 gridStyle2 gridStyle2 gridStyle2 gridStyle2 gridStyle2

Custom widget template
The template widget type makes it possible to set a template to use as an include.

Let's have a look at a sample template used to present contributors to a document.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 127

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<f:subview xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:a4j="https://ajax4jsf.dev.java.net/ajax"
xmlns:nxu="http://nuxeo.org/nxweb/util"
xmlns:nxdir="http://nuxeo.org/nxdirectory"”
xmlns:c="http://java.sun.com/jstl/core"
xmlns:nxp="http://nuxeo.org/nxweb/pdf"
id="#{widget.id}">
<div>
<c:forEach var="username" items="#{field}" varStatus="status">
<c:if test="#{!status.first}">#{status.last ? andLabel : ', '}</c:if>
<h:outputText value="#{nxu:userFullName(username)}"
title="#{username}" onmouseover="tooltip.show(username, 500);"
onmouseout="tooltip.hide();"/>
</c:forEach>
</div>
</f:subview>

This widget presents the contributors of a document with specific links on each on these user identifier information,
whatever the widget mode.

Having a widget type just to perform this kind of rendering would be overkill, so using a widget with type "template"
can be useful here.

Since 5.4.2, even template widgets should handle the new 'plain' and 'pdf' modes for an accurate rendering of the
layout in PDF (content view and document export) and CSV (content view export). CSV export does not need any
specific CSV rendering, so the widget rendering in 'plain' mode should be enough.

Some helper methods make it easier to check the widget mode, here is the complete current definition of the
contributors widget type in Nuxeo.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 128

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<f:subview xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:a4j="https://ajax4jsf.dev.java.net/ajax"
xmlns:nxu="http://nuxeo.org/nxweb/util"
xmlns:nxdir="http://nuxeo.org/nxdirectory"”
xmlns:c="http://java.sun.com/jstl/core"
xmlns:nxp="http://nuxeo.org/nxweb/pdf"
id="#{widget.id}">

<c:set var="andLabel" value=" #{messages]['label.and']} scope="page" />

<c:if test="#{nxl:isLikePlainMode (widget.mode)}"><nxu:inputList
value="#{field}" model="contributorsModel"><h:outputText
value="#{nxu:userFullName (contributorsModel.rowData)}" /><h:outputText

n n

rendered="#{contributorsModel.rowIndex != contributorsModel.rowCount -1}"
value="#{nxu:test (contributorsModel.rowIndex == contributorsModel.rowCount -2,
andLabel, ', ')}" /></nxu:inputList></c:if>
<c:if test="#{widget.mode == 'pdf'}">

<nxp:html>
<c:forEach var="username" items="#{field}" varStatus="status">
<c:if test="#{!status.first}">#{status.last ? andLabel : ', '}</c:if>
<h:outputText value="#{nxu:userFullName (username)}" />
</c:forEach>

</nxp:html>

</c:if>

<c:if test="#{nxl:isLikeViewMode (widget.mode)}">
<div>

<c:forEach var="username" items="#{field}" varStatus="status">
<c:if test="#{!status.first}">#{status.last ? andLabel : ', '}</c:if>
<h:outputText value="#{nxu:userFullName(username)}"
title="#{username}" onmouseover="tooltip.show(username, 500);"
onmouseout="tooltip.hide();"/>
</c:forEach>
</div>
</c:if>
</f:subview>

Note that extra spaces have been removed when rendering in the "plain" mode as these spaces may appear on the
final rendering (in CSV columns for instance).

When this template is included in the page, the "widget" variable is made available. For a complete list of available
variables, please refer to the EL expressions documentation.

Some rules must be followed when writing XHTML to be included in templates:

® Use the widget id as identifier: the widget id is computed to be unique within the page, so it should be used
instead of fixed id attributes so that another widget using the same template will not introduce duplicated ids
in the jsf component tree.

¢ Use the variable with name following the field_n pattern to reference field values. For instance, binding a jsf
component value attribute to #{field_0} means binding it to the first field definition. The expression #{field} is
an alias to #{field_0}.

Builtin templates to handle complex properties

List widget template

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 129

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/NXDOC/Manage+layouts#Managelayouts-ELexpressionsinlayoutsandwidgets

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

The standard widget type "list" is actually a widget of type "template" using a static template path: /widgets/list
_widget template.xhtml. If this default behavior does not suit your needs, you can simply copy this template,
make your changes, and use a widget of type "template" with the new template path.

This template assumes that each element of the list will be displayed using subwidgets definitions.

For instance, to handle a list of String elements, you can use the definition:

<widget name="contributors" type="list">
<fields>
<field>dc:contributors</field>
</fields>
<subWidgets>
<widget name="contributor" type="text">
<fields>
<field></field>
</fields>
</widget>
</subWidgets>
</widget>

The empty field definition in the subwidget is used to specify that each element of the list is itself the element to
display.

With Nuxeo version <= 5.3.0, to handle a list of complex properties (each entry of the list is a map with keys 'name'
and 'email' for instance), you can use the definition:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 130

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<widget name="employees" type="list">
<fields>
<field>company:employees</field>
</fields>
<subWidgets>
<widget name="employee" type="template">
<labels>
<label mode="any"></label>
</labels>
<fields>
<field></field>
</fields>
<properties mode="any">
<property name="template">
/widgets/complex_widget_template.xhtml
</property>
</properties>
<!-- subwidgets for complex -->
<subWidgets>
<widget name="name" type="text">
<fields>
<field>name</field>
</fields>
</widget>
<widget name="email" type="text">
<fields>
<field>email</field>
</fields>
</widget>
</subWidgets>
</widget>
</subWidgets>
</widget>

With Nuxeo version > 5.3.0, to handle a list of complex properties (each entry of the list is a map with keys 'name’
and 'email' for instance), you can use the definition:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 131

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<widget name="employees" type="list">
<fields>
<field>company:employees</field>
</fields>
<subWidgets>
<widget name="employee" type="template">
<labels>
<label mode="any"></label>
</labels>
<properties mode="any">
<property name="template">
/widgets/complex_list_item widget_template.xhtml
</property>
</properties>
<!-- subwidgets for complex -->
<subWidgets>
<widget name="name" type="text">
<fields>
<field>name</field>
</fields>
</widget>
<widget name="email" type="text">
<fields>
<field>email</field>
</fields>
</widget>
</subWidgets>
</widget>
</subWidgets>
</widget>

Complex widget template

A builtin template has been added to handle complex properties. It is available at /widgets/complex widget t
emplate.xhtml. It assumes that each element of the complex property will be displayed using subwidgets

definitions.

To handle a complex property (the value is a map with keys 'name' and 'email' for instance, you can use the
definition:

Copyright © 2010-2013 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 132

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<widget name="manager" type="template">

<fields>
<field>company:manager</field>

</fields>

<properties mode="any">
<property name="template">

/widgets/complex_widget_template.xhtml

</property>

</properties>

<subWidgets>
<widget name="name" type="text">

<fields>
<field>name</field>
</fields>

</widget>
<widget name="email" type="text">

<fields>
<field>email</field>
</fields>
</widget>
</subWidgets>
</widget>

Lists of lists

A builtin template has been added to handle sublists: the original "list" widget is equivalent to a widget of type

"template" using the file /widgets/list widget template.xhtml. To handle the sublist, this template needs

to be changed. The file 1ist subwidget template.xhtml is available for it since Nuxeo version 5.2 GA.

To handle a sublist property, you can use take example on this definition:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

133

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<widget name="employees" type="list">
<fields>
<field>company:employees</field>
</fields>
<subWidgets>
<widget name="employee" type="template">
<labels>
<label mode="any"></label>
</labels>
<properties mode="any">
<property name="template">
/widgets/complex_list_item widget_template.xhtml
</property>
</properties>
<!-- subwidgets for complex -->
<subWidgets>
<widget name="phoneNumbers" type="template">
<fields>
<field>phoneNumbers</field>
</fields>
<properties mode="any">
<property name="template">
/widgets/list_subwidget_template.xhtml
</property>
</properties>
<subWidgets>
<widget name="phoneNumber" type="text">
<label mode="any"></label>
<fields>
<field></field>
</fields>
</widget>
</subWidgets>
</widget>
</subWidgets>
</widget>
</subWidgets>
</widget>

Related topics

Manage layouts

Custom layout and widget templates

Standard widget types

Layout how-tos
Custom widget types

Custom widget types can be added to the standard list thanks to another extension point on the web layout service.

Usually widget types are template widgets that are declared as widget types to make them easily reusable in
different layouts, have a clear widget types library, and make them available in Studio.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 134

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Simple widget type registration

Here is a sample widget type registration, based on a widget template:

<component name="org.nuxeo.ecm.platform.forms.layout.MyContribution">

<extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
point="widgettypes">

<widgetType name="my_widget_type">
<handler-class>

org.nuxeo.ecm.platform. forms.layout.facelets.plugins.TemplateWidgetTypeHandler
</handler-class>
<property name="template">
/widgets/my_own_widget_template.xhtml
</property>
</widgetType>

</extension>

</component>

Before this contribution, the widgets needing this template were declaring (for instance):

<widget name="my_widget" type="template">
<labels>
<label mode="any">My label</label>
</labels>
<translated>false</translated>
<fields>
<field>dc:description</field>
</fields>
<properties widgetMode="any">
<property name="template">/widgets/my_own_widget_template.xhtml</property>
</properties>
</widget>

With this configuration, the following widget definition can now be used:

<widget name="my_ widget" type="my_widget_type">
<labels>
<label mode="any">My label</label>
</labels>
<translated>false</translated>
<fields>
<field>dc:description</field>
</fields>
</widget>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

135

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Complex widget type registration

Here is a more complex sample widget type registration:

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.forms.layout.MyContribution">

<extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
point="widgettypes">

<widgetType name="customtype">
<handler-class>
org.myproject.MyCustomWidgetTypeHandler
</handler-class>
<property name="foo">bar</property>
</widgetType>

</extension>

</component>

The custom widget type class must follow the org.nuxeo.ecm.platform. forms.layout.facelets.Widget
TypeHandler interface.

Additional properties can be added to the type registration so that the same class can be reused with a different
behavior given the property value.

The widget type handler is used to generate facelet tag handlers dynamically taking into account the mode, and any
other properties that can be found on a widget.

The best thing to do before writing a custom widget type handler is to go see how standard widget type handlers are
implemented, as some helper methods can be reused to ease implementation of specific behaviors.

Additional widget type configuration

Some additional information can be put on a widget type for several purposes:

® configuration of widgets made available in Studio

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 136

http://doc.nuxeo.com/x/GATF

nuXxeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Layout Widget Editor

Label 17 | title |
Help label [7] []
Translated [7] [l
Read only [7]]

P Advanced mode configuration [7]

Widget Type | Text | @ Online demo

Required O

Max length

Size

Style

,—,—_,—_—

Style class

Cancel | || save

¢ documentation of available layouts and widget types on a given Nuxeo instance (see on your Nuxeo instance:
http://localhost:nuxeo/site/layout-manager/, http://localhost:nuxeo/site/layout/ before 5.5)

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 137

http://doc.nuxeo.com/x/GATF
http://localhostnuxeo
http://localhostnuxeo

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

dev

[SON definitions 5.4.0 5.4.1 5.4.2

Layout
Template

document

JSON definitions 5.4.0 5.4.1 5.4.2

Checkbox
Complex
Datetime
Decimal number
Duration

Eile

HTMIL. text
Hidden

Integer

List

Multiple vocabulary
Secret

Text

Textarea

Vocabulary

Index - Wiki export

TEXT

The text widget displays an input text in create or
edit mode, with additional message tag for errors,
and a regular text output in any other mode.

Widgets using this type can provide properties
accepted on a <h:inputText /> tag in create or
edit mode, and properties accepted on a
<h:outputText /> tag in other modes.
General Information

Categories: document
Widget type name: text

Links
JSON definition

Sample JSON export URLs:

Before 5.5:

http://localhost:8080/nuxeo/site/layout/widgets/widgetT all widget types with category "document"

ypes/document

http://localhost:8080/nuxeo/site/layout/widgets/widgetT all widget types with category "document”, filtering

ypes/document?version=5.4.0

Since 5.5:

widget types with a version strictly higher than 5.4.0

http://localhost:8080/nuxeo/site/layout-manager/widget all widget types with category "document"

s/widget-types/document

http://localhost:8080/nuxeo/site/layout-manager/widget all widget types with category "document”, filtering
s/widget-types/document?version=5.4.0 widget types with a version strictly higher than 5.4.0

http://localhost:8080/nuxeo/site/layout-manager/widget all widget types with both categories "document" and

s/widget-types?categories=studio%20document&versio "studio", filtering widget types with a version strictly

n=5.4.0

higher than 5.4.0

® documentation and showcase of this widget type (see http://showcase.nuxeo.com/layout)

Copyright © 2010-2013 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 138

http://doc.nuxeo.com/x/GATF
http://localhost:8080/nuxeo/site/layout/widgets/widgetTypes/document
http://localhost:8080/nuxeo/site/layout/widgets/widgetTypes/document
http://localhost:8080/nuxeo/site/layout/widgets/widgetTypes/document?version=5.4.0
http://localhost:8080/nuxeo/site/layout/widgets/widgetTypes/document?version=5.4.0
http://localhost:8080/nuxeo/site/layout-manager/widgets/widget-types/document
http://localhost:8080/nuxeo/site/layout-manager/widgets/widget-types/document
http://localhost:8080/nuxeo/site/layout-manager/widgets/widget-types/document?version=5.4.0
http://localhost:8080/nuxeo/site/layout-manager/widgets/widget-types/document?version=5.4.0
http://localhost:8080/nuxeo/site/layout-manager/widgets/widget-types?categories=studio%20document&version=5.4.0
http://localhost:8080/nuxeo/site/layout-manager/widgets/widget-types?categories=studio%20document&version=5.4.0
http://localhost:8080/nuxeo/site/layout-manager/widgets/widget-types?categories=studio%20document&version=5.4.0
http://showcase.nuxeo.com/layout

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Text

Overview | Reference m

View mode Edit mode

Properties

& Change the properties in the form below to preview the generated widget.

Label [My widget label |

Help label [My widget help label]
4 Translated |

Style []

Style class []
4 Escape |

Custom @ Add

properties

Submit

Preview

¢ My widget
label

Some sample text

Here is a sample configuration extract:

<widgetType name="text">
<configuration>
<title>Text</title>
<description>
<p>

The text widget displays an input text in create or edit mode, with
additional message tag for errors, and a regular text output in any

other mode.
</p>
<p>

Widgets using this type can provide properties accepted on a
<h:inputText /> tag in create or edit mode, and properties
accepted on a <h:outputText /> tag in other modes.

</p>
</description>

<demo id="textWidget" previewEnabled="true" />

<supportedModes>
<mode>edit</mode>
<mode>view</mode>
</supportedModes>
<fields>
<list>false</list>
<complex>false</complex>
<supportedTypes>
<type>string</type>
<type>path</type>
</supportedTypes>
<defaultTypes>
<type>string</type>
</defaultTypes>
</fields>
<categories>
<category>document</category>
</categories>
<properties>
<layouts mode="view">

<layout name="text_widget_type_properties_view">

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<rows>
<row>
<widget>style</widget>
</row>
<row>
<widget>styleClass</widget>
</row>
[...]
</rows>
<widget name="style" type="text">
<labels>
<label mode="any">Style</label>
</labels>
<fields>
<field>style</field>
</fields>
</widget>
<widget name="styleClass" type="text">
<labels>
<label mode="any">Style class</label>
</labels>
<fields>
<field>styleClass</field>
</fields>
</widget>
[...]
</layout>
</layouts>
<layouts mode="edit">
<layout name="text_widget_type properties_edit">
<rows>
<row>
<widget>required</widget>
</row>
<row>
<widget>maxlength</widget>
</row>
<row>
<widget>title</widget>
</row>
[...]
</rows>
<widget name="maxlength" type="int">
<labels>
<label mode="any">Max length</label>
</labels>
<fields>
<field>maxlength</field>
</fields>
</widget>
<widget name="required" type="checkbox">
<labels>
<label mode="any">Required</label>
</labels>
<fields>
<field>required</field>
</fields>
</widget>
<widget name="title" type="text">

Copyright © 2010-2013 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

140

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<labels>
<label mode="any">Title</label>
</labels>
<fields>
<field>title</field>
</fields>
<widgetModes>
<mode value="any">hidden</mode>
<mode value="view_reference">view</mode>
</widgetModes>
</widget>
[...]
</layout>
</layouts>
</properties>
</configuration>
<handler-class>
org.nuxeo.ecm.platform.forms.layout.facelets.plugins.TextWidgetTypeHandler

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

141

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

</handler-class>
</widgetType>

The "configuration" element is optional, but when defined it'll be used to define the following information:

® title: the widget type title

® description: the widget type description, that accepts HTML content

* demo: this refers to this widget type representation in the layout demo (see the online demo, for instance http:
[Nlayout.demo.nuxeo.org/nuxeo/layoutDemo/textWidget)

® supportedModes: the list of supported modes (for instance some widget types are read-only). This is useful
for Studio configuration: if the edit mode is not available, the corresponding panel for properties configuration
will not be shown.

® fields: this configuration is subject to change, but it is currently used to define what kind of widgets types are
available for a given field type.

® categories: list of categories for this widget type. This is a marker for display and it can also be used to
facilitate exports. The default categories are "document”, "summary", "listing" and "dev".

® properties: the layouts to use to display the available widget properties depending on the mode. This is a
standard layout configuration, using the property name as field. Properties hidden in the mode
"view_reference" will only be displayed on the reference table, and will not be displayed for configuration in
Studio or preview in the Layout showcase.

Generic layout usage
Layouts can be used with other kind of objects than documents.

The field definition has to match a document property for which setters and getters will be available, or the "value"
property must be passed explicitely for the binding to happen. Depending on the widget, other kinds of bindings can
be done.

Since Nuxeo Platform 5.6, the field definition can contain the complete binding itself and be independent from the
value passed to the tag. It just needs to be formatted like an EL expression, for instance: #myBinding}.

Layout how-tos
How to add a new widget to the default summary layout?
© This how-to defines how things should be done from version 5.6. For earlier versions, the whole

summary layout needs to be redefined.

Since version 5.6, a new widget type has been added to display actions. It takes advantage of the fact that actions
needing different kinds of rendering can now be mixed up even if they're using the same category. This widget type
makes it possible to display a list of actions, but also to include some widget types rendering.

Since the default summary layout contains 4 widgets displaying actions, it is possible to pile up widgets in them. The
available action categories are:

¢ "SUMMARY_PANEL_TOP" to add widgets on top of default summary (takes the whole panel width, empty by
default)

* "SUMMARY_PANEL_LEFT" for left zone

* "SUMMARY_PANEL_RIGHT" for right zone

* "SUMMARY_PANEL_BOTTOM" for bottom zone (takes the whole panel width, empty by default)

Here is the definition of the widget referencing actions for the "SUMMARY_TOP_LEFT" category:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 142

http://doc.nuxeo.com/x/GATF
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/textWidget
http://layout.demo.nuxeo.org/nuxeo/layoutDemo/textWidget

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"

point="widgets">

<widget name="summary_ panel_left" type="summary_current_document_custom_actions">
<handlingLabels>true</handlingLabels>
<labels>
<label mode="any"></label>
</labels>
<properties widgetMode="any">
<property name="category">SUMMARY_ PANEL_LEFT</property>
<property name="subStyleClass">summaryActions</property>
</properties>
</widget>

</extension>

Default widgets (presenting the document relations, status, publications, etc...) are contributed to one of these
zones, with orders separated by 100 (check out the explorer to get a complete overview, beware that addons may

contribute to these zones already).

Here is a sample contribution to add a widget to the left widget panel:

Copyright © 2010-2013 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 143

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
point="widgets">

<widget name="summary_ note_text" type="richtext_with_mimetype">
<fields>
<field>note:note</field>
<field>note:mime_type</field>
</fields>
<properties mode="view">
<property name="translatedHtml">
#{noteActions.translateImageLinks(field 0)}
</property>
<property name="cssClass">note_content_block</property>
</properties>
</widget>

</extension>

<extension target="org.nuxeo.ecm.platform.actions.ActionService"
point="actions">

<action id="summary_note_text" type="widget" order="100">
<category>SUMMARY_PANEL_LEFT</category>
<properties>
<property name="widgetName">summary_ note_text</property>
</properties>
<filter-id>hasNote</filter-id>
</action>

</extension>

This contribution will add the widget named "summary_note_text" to the summary layout when current document is
a note (see filter named "hasNote").

The action order will make it possible to change the order of appearance of this new widget in comparison to other
"action widgets" defined in the same category.

Related topics

Manage layouts

Custom layout and widget templates

Standard widget types

Layout how-tos
Widgets known limitations

Some widgets have limitations in some specific conditions of use. We maintain a list of known problems here.

* Widgets using HTML text editor cannot be used in a list.

* File widget cannot be used in an Ajax form.

® You might have some troubles using chain select in Ajax forms or when using lists. This occurs in some very
specific conditions, so you have to check if it is ok for your use case first. We plan to rewrite completely this
widget for solving this issue.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 144

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

®* Widgets using Rich Faces suggestion components doesn't work correctly in a list. Limitation is at lower
Rich Faces level, so there is no short term fix planned.

Content views

© Content views are available in Nuxeo since version 5.4.

Definition

A content view is a notion to define all the elements needed to get a list of items and perform their rendering. The
most obvious use case is the listing of a folderish document content, where we would like to be able to:

® define the NXQL query that will be used to retrieve the documents, filtering some of them (documents in the
trash for instance)

pass on contextual parameters to the query (the current container identifier)

define a filtering form to refine the query

define what columns will be used for the rendering of the list, and how to display their content

handle selection of documents, and actions available when selecting them (copy, paste, delete...)

handle sorting and pagination

handle caching, and refresh of this cache when a document is created, deleted, modified...

In this section

® Definition

® The content view query
The content view result layouts
The content view selection list
The content view actions
Additional configuration

Caching
Document content views

Rendering

The Nuxeo Content View framework makes it possible to define such an object, by registering content views to the
service. Here is a sample contribution, that will display the children of the current document:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 145

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<extension target="org.nuxeo.ecm.platform.ui.web.ContentViewService"
point="contentViews">

<contentView name="document_content">

<coreQueryPageProvider>
<property name="coreSession">#{documentManager}</property>
<pattern>
SELECT * FROM Document WHERE ecm:parentId = ?
AND ecm:isCheckedInVersion = 0

AND ecm:mixinType != 'HiddenInNavigation'
AND ecm:currentLifeCycleState != 'deleted'
</pattern>

<parameter>#{currentDocument.id}</parameter>

<sort column="dc:title" ascending="true" />

<pageSize>20</pageSize>
</coreQueryPageProvider>

<cacheKey>#{currentDocument.id}</cacheKey>
<cacheSize>10</cacheSize>
<refresh>
<event>documentChanged</event>
<event>documentChildrenChanged</event>
</refresh>

<resultLayouts>
<layout name="document_listing_ajax" title="document_listing"
translateTitle="true" iconPath="/icons/document_listing_icon.png"
showCSVExport="true" showPDFExport="true" showSyndicationLinks="true" />
<layout name="document_listing_ajax_compact_2_columns”
title="document_listing compact_2_ columns"”
translateTitle="true"
iconPath="/icons/document_listing_compact_2_columns_icon.png" />
<layout name="document_listing_ajax_icon_2_columns"
title="document_listing _icon_2_ columns"
translateTitle="true"
iconPath="/icons/document_listing_icon_2_columns_icon.png" />
</resultLayouts>

<selectionList>CURRENT_SELECTION</selectionList>
<actions category="CURRENT_ SELECTION_LIST" />

</contentView>

</extension>

The content view query

The "coreQueryPageProvider" element makes it possible to define whet query will be performed. Here it is a query
on a core session, using a pattern with one parameter.

This element accepts any number of property elements, defining needed context variables for the page provider to
perform its work. The "coreSession" property is mandatory for a core query to be processed and is bound to the
core session proxy named "documentManager" available in a default Nuxeo application.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 146

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

This element also accepts any number of "parameter" elements, where order of definition matters: this EL
expression will be resolved when performing the query, replacing the '?' characters it holds.

The main difference between properties and parameters is that properties will not be recomputed when refreshing
the provider, whereas parameters will be. Properties will only be recomputed when resetting the provider.

The "sort" element defines the default sort, that can be changed later through the interface. There can be any
number of "sort" elements. The "sortInfosBinding" element can also be defined: it can resolve an EL expression in
case the sort infos are held by a thirs party instance (document, seam component...) and will be used instead of the
default sort information if not null or empty. The EL expression can either resolve to a list of org.nuxeo.ecm.core
.api.SortInfo instances, or a list of map items using keys "sortColumn" (with a String value) and
"sortAscending" (with a boolean value).

The "pageSize" element defines the default page size, it can also be changed later. The "pageSizeBinding" element
can also be defined: it can resolve an EL expression in case the page size is held by a third party instance
(document, seam component...), and will be used instead of the default page size if not null.

The optional "maxPageSize" element can be placed at the same level than "pageSize" and is available since version
5.4.2. It makes it possible to define the maximum page size so that the content view does not overload the server
when retrieving a large number of items. When not set, the default value "100" will be used: even when asking for all
the results with a page size with value "0" (when exporting the content view in CSV format for instance), only 100
items will be returned. Since 5.6 (and some previous hotfixed versions, see NXP-9052) this is configurable globally
using the runtime property "nuxeo.pageprovider.default-max-page-size".

Since version 5.6, you can set a maximum number of results. This is useful for performance reasons, because it
takes time to get the total number of results (and thus the number of pages). If there are more results than the limit,
then the number of pages will be unknown, nevertheless you can still navigate to the next page if it exists.

To set this limit you need to add a "maxResults" parameter to "coreQueryPageProvider", either using an integer
value or one of the following keywords:

* DEFAULT_NAVIGATION_RESULTS: Used by most of the navigation page provider, the default is 200 and it
can be overridden using Java options:

JAVA_OPTS=$JAVA_OPTS
-Dorg.nuxeo.ecm.platform.query.nxql.defaultNavigationResults=1000

or directly in nuxeo.conf by adding this line:

org.nuxeo.ecm.platform.query.nxql.defaultNavigationResults=1000

®* PAGE_SIZE: this is useful when you are interested in a single page or if you don't need a total count.

This kind of core query can also perform a more complex form of query, using a document model to store query
parameters. Using a document model makes it easy to :

® use a layout to display the form that will define query parameters
® save this document in the repository, so that the same query can be replayed when viewing this document

Here is an example of such a registration:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 147

http://doc.nuxeo.com/x/GATF
https://jira.nuxeo.com/browse/NXP-9052

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<extension target="org.nuxeo.ecm.platform.ui.web.ContentViewService"
point="contentViews">

<contentView name="document_content">

<coreQueryPageProvider>
<property name="coreSession">#{documentManager}</property>
<property name="maxResults">DEFAULT_ NAVIGATION_ RESULTS</property>
<whereClause docType="AdvancedSearch">

<predicate parameter="dc:title" operator="FULLTEXT">
<field schema="advanced_search" name="title" />
</predicate>

<predicate parameter="dc:created" operator="BETWEEN">
<field schema="advanced_search" name="created_min" />
<field schema="advanced_search" name="created_max" />
</predicate>

<predicate parameter="dc:modified" operator="BETWEEN">
<field schema="advanced_search" name="modified_min" />
<field schema="advanced_search"” name="modified_max" />
</predicate>

<predicate parameter="dc:language" operator="LIKE">
<field schema="advanced_search" name="language" />
</predicate>

<predicate parameter="ecm:currentLifeCycleState" operator="IN">
<field schema="advanced_search"” name="currentLifeCycleStates" />
</predicate>

<fixedPart>
ecm:parentId = ? AND ecm:isCheckedInVersion = 0 AND ecm:mixinType !=
'HiddenInNavigation' AND ecm:currentLifeCycleState != 'deleted’
</fixedPart>

</whereClause>
<parameter>#{currentDocument.id}</parameter>
<sort column="dc:title" ascending="true" />
<pageSize>20</pageSize>
</coreQueryPageProvider>

<searchLayout name="document_content_search"
filterDisplayType="quick" />
<showFilterForm>true</showFilterForm>

</extension>

This definition holds a "whereClause" element, stating the search document type and predicates explaining how the
document model properties will translated into a NXQL query. It can also state a "fixedPart" element that will added
as to the query string. This fixed part can also take parameters using the '?' character and "parameter" elements.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 148

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

The "searchLayout" element defines what layouts needs to be used when rendering the search document model: it
will be in charge of displaying the search form. Since 5.5, this element accepts a "filterDisplayType" attribute. When
set to "quick", it'll display a form showing only the first row of the layout, visible directly above the content view
results. The whole filter form is then displayed in a popup. Otherwise, the default rendering is used, and the filter
form is visible in a foldable box.

Since 5.4.2, the "showFilterForm" element makes it possible to show this form above the content view results.

© Since 5.4.2, the "searchDocument" variable can be used in EL expressions to bind the page size,
the sort infos and the result columns to the search document properties.
Sample usage:

<contentView name="myContentView">
<coreQueryPageProvider>
<property name="coreSession">#{documentManager }</property>
<whereClause docType="AdvancedSearch">
<fixedPart>
ecm:currentLifeCycleState != 'deleted'
</fixedPart>
<predicate parameter="dc:title" operator="FULLTEXT">
<field schema="dublincore" name="title" />
</predicate>

<pageSizeBinding>#{searchDocument.cvd.pageSize}</pageSizeBinding>
<sortInfosBinding>#{searchDocument.cvd.sortInfos}</sortInfosBinding>
</whereClause>

</coreQueryPageProvider>

[one]

</contentView>

The content view result layouts

The result layouts control the display of resulting documents. It states different kinds of rendering so that it's possible
to switch between them. They also accept a title and an icon, useful for rendering.

The layout configuration is stanadard and has to follow listing layouts configuration standards. The layout template,
as well as widgets displaying selection checkboxes, need to perform an Ajax selection of documents, and re-render
the action buttons region.

The content view selection list

The "selectionList" element will be used to fill the document list with given name.

Selection is done through ajax, so that selection is not lost when not performing any action thanks to this selection.

The content view actions

The "actions" element can be repeated any number of times: it states the actions category to use to display buttons
applying to this table ("copy", "paste", "delete",...). Each "actions" element will generate a new row of buttons.

These actions will be displayed under the table in default templates, and will be re-rendered when selecting an item
of the table so that they are enabled or disabled. this is performed using adequate filters, performing checks on

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 149

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

selected items.

Additional configuration

The "searchDocument" element can be filled on a content view using an EL expression: it will be used as the search
document model. Otherwise, a bare document will be generated from the document type.

Sample usage, showing how to add a clause to the search depending on title set on the current document (will
watch non deleted document with the same title):

<contentView name="sampleContentViewWithCustomSearchDocument">
<searchDocument>#{currentDocument}</searchDocument>
<coreQueryPageProvider>
<property name="coreSession">#{documentManager}</property>
<whereClause docType="AdvancedSearch">
<fixedPart>
ecm:currentLifeCycleState != 'deleted'
</fixedPart>
<predicate parameter="dc:title" operator="FULLTEXT">
<field schema="dublincore" name="title" />
</predicate>
</whereClause>
</coreQueryPageProvider>
</contentView>

The "resultColumns" element can be filled on a content view using an EL expression: it will be used to resolve the
list of selected columns for the current result layout. If several result layouts are defined, they should be configured
so that their rows are always selected in case the selected column names do not match theirs.

Sample usage, showing how to reuse the same selected colums than the one selected on the advanced search
page:

<contentView name="myContentView">
[---1
<resultColumns>
#{documentSearchActions.selectedLayoutColumns}
</resultColumns>
</contentView>

Additional rendering information can also be set, to be used by templates when rendering the content view:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 150

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<contentView name="CURRENT_DOCUMENT_ CHILDREN">
<title>label.current.document.children</title>
<translateTitle>true</translateTitle>
<iconPath>/icons/document_listing_icon.png</iconPath>
<emptySentence>label.content.empty.search</emptySentence>
<translateEmptySentence>true</translateEmptySentence>
<translateEmptySentence>true</translateEmptySentence>
<showPageSizeSelector>true</showPageSizeSelector>
<showRefreshCommand>true</showRefreshCommand>

</contentView>

The element "showTitle" is available since version 5.4.2. It can be used to define a title for the content view, without
displaying it on the default rendering. It can also be used when exporting the content view in CSV format, for
instance.

The elements "emptySentence" and "translateEmptySentence" are available since version 5.4.2. They are used to
display the message stating that there are no elements in the content view.

The elements "showPageSizeSelector" and "showRefreshCommand" are available since version 5.4.2. They are
used to control the display of the page size selector, and of the "refresh current page" button. They both default to
true.

Caching

The "cacheKey" element, if filled, will make it possible to keep content views in cache in the current conversation. It
accepts EL expressions, but a static cache key can be used to cache only one instance.

The "cacheSize" element is useful to use a queue of cached instances. In the example, 10 instances of content
views with a different cache key will be kept in cache. When the 11th entry, with a new cache key, is generated, the
first content view put in the cache will be removed, and will need to be re-generated again. This cache configuration
will make it possible to navigate to 10 different folderish document pages, and keep the current page, the current
sort information, and current result layout.

When caching only one instance, setting the "cacheSize" element to more than "1" is useless. Caching only one
instance can be useful when several features need to retrieve information from the same content view.

If a cache key is given, but no cache size is set, "5" will be used by default. Using "0" means no caching at all (and
the cache key will be ignored).

Caching is done by a Seam component named "contentViewActions". Although the cache key, cache size and
events configurations handle the most common use cases, it is sometimes useful to call this bean methods directly
when forcing a refresh.

The "refresh" and "reset" elements configurations make it possible to refresh/reset this content view when receiving
the listed Seam event names. Only "documentChanged" and "documentChildrenChanged" are handled by default,
but it is possible to react to new events by adding a method with an observer on this event on a custom Seam
component, and call the method "contentViewActions.refreshOnSeamEvent(String seamEventName)" or
"contentViewActions.resetPageProviderOnSeamEvent(String seamEventName)".

Refresh will keep current settings, and will force the query to be done again. Reset will delete content views

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 151

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

completely from the cache, and force complete re-generation of the content view, its provider, and the search
document model if set.

Before 5.7.1, selection actions were misbehaving when using a cache of size "0", so content
views with selections actions needed a cache size of at least "1". Since 5.7.1 (and 5.6-HF02),
when using value "0", the content view is cached anyhow, but its page provider is refreshed
every time it is rendered.

As this behaviour is costly, using refresh events can be enough most of the time. But it is not
possible to trigger a refresh for other users when using Seam events, so this configuration makes
it possible to make sure the content view is up to date when other users may have an impact on
its content.

Document content views
It is possible to define content views on a document type. This makes it easier to define folderish documents views.
Here is the default configuration of content views for Nuxeo folderish documents:
<type id="Folder">
<label>Folder</label>
<contentViews category="content">
<contentView>document_content</contentView>
</contentViews>
<contentViews category="trash_content">
<contentView showInExportView="false">document_trash_content</contentView>

</contentViews>
</type>

The "document_content" content view will be displayed on this folder default view, and the
"document_trash_content" content view will be displayed on the trash tab.

The "category" attribute is filled from xhtml templates to render all content views defined in a given category.

The "showInExportView" attribute is used to check whether this content view should be displayed in the document
export view (and PDF export)

If several content views are filled in the same category, both will be displayed on the same page.

Rendering

Rendering is done using methods set on Generic Seam components: "contentViewActions" (org.nuxeo.ecm.web
app.contentbrowser.ContentViewActions) and "documentContentViewActions" (org.nuxeo.ecm.webapp
.contentbrowser.DocumentContentViewActions) to handle document content views categories.

A typical usage of content views, to render the results, would be:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 152

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<nxu:set var="contentViewName" value="my_content_view_name">
<ui:decorate template="/incl/content_view.xhtml" />

</nxu:set>

The template /incl/content_ view.xhtml handles generic rendering of the given content view (content view
title, pagination, result layout selection, list rendering, actions rendering) . It inserts names region that can be
overriden when using the "ui:decorate" tag.

The current version of this template is here: https://github.com/nuxeo/nuxeo-jsf/blob/5.7-SNAPSHOT/nuxeo-platform

-webapp-base/src/main/resources/web/nuxeo.war/incl/content_view.xhtml

Here is the sample rendering of the search form defined on a content view named "document_content_filter":

<nxu:set var="contentView"

value="#{contentViewActions.getContentViewWithProvider ('document_content_filter')}"
cache="true">
<c:if test="#{contentView != null}">
<nxl:layout name="#{contentView.searchLayout.name}" mode="edit"
value="#{contentView.searchDocumentModel}" />
</c:if>
</nxu:set>

Here is a typical way of refreshing or resetting a provider named "advanced_search" from the interface:

<div>
<h:commandButton value="#{messages['command.search']}"
action="search_results_advanced"
styleClass="button">
<nxu:actionListenerMethod
value="#{contentViewActions.refresh('advanced_search')}" />
</h:commandButton>
<h:commandButton value="#{messages['command.clearSearch']}"
action="#{contentViewActions.reset ('advanced_search')}"
immediate="true"
styleClass="button" />
</div>

Custom Page Providers

This chapter focuses on writing custom page providers, for instance when you'd like to use content views to query
and display results from an external system. For an introduction to content views, please refer to the Content Views
chapter.

Page providers configuration

The <coreQueryPageProvider> element makes it possible to answer to most common use cases. If you would

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 153

http://doc.nuxeo.com/x/GATF
https://github.com/nuxeo/nuxeo-jsf/blob/5.7-SNAPSHOT/nuxeo-platform-webapp-base/src/main/resources/web/nuxeo.war/incl/content_view.xhtml
https://github.com/nuxeo/nuxeo-jsf/blob/5.7-SNAPSHOT/nuxeo-platform-webapp-base/src/main/resources/web/nuxeo.war/incl/content_view.xhtml

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

like to use another kind of query, you can use an alternate element and specify the PageProvider class to use.

Here is a sample example of a custom page provider configuration:

<extension target="org.nuxeo.ecm.platform.ui.web.ContentViewService"
point="contentViews">

<contentView name="CURRENT_DOCUMENT CHILDREN_FETCH">
<genericPageProvider
class="org.nuxeo.ecm.platform.query.nxql.CoreQueryAndFetchPageProvider">
<property name="coreSession">#{documentManager}</property>

<pattern>
SELECT dc:title FROM Document WHERE ecm:parentId = ? AND
ecm:isCheckedInVersion = 0 AND ecm:mixinType != 'HiddenInNavigation'
AND ecm:currentLifeCycleState != 'deleted'

</pattern>

<parameter>#{currentDocument.id}</parameter>

<sort column="dc:title" ascending="true" />

<pageSize>2</pageSize>
</genericPageProvider>

</contentView>

</extension>

The <genericPageProvider> element takes an additional class attribute stating the page provider class. This
class has to follow the org.nuxeo.ecm.core.api.PageProvider interface and does not need to list document
models: content views do not force the item type to a given interface. The abstract class org.nuxeo.ecm.core.a
pi.AbstractPageProvider makes it easier to define a new page provider as it implements most of the interface
methods in a generic way.

As result layouts can apply to other objects than document models, their definition can be adapted to fit to the kind
of results provided by the custom page provider.

In the given example, another kind of query will be performed on a core session, and will return a list of maps, each
map holding the "dc:title" key and corresponding value on the matching documents.

The <genericPageProvider> element accepts all the other configurations present on the <coreQueryPagePro
vider> element: it is up to the PageProvider implementation to use them to build its query or not. It can also
perform its own caching.

The properties can be defined as EL expressions and make it possible for the query provider to have access to
contextual information. In the above example, the core session to the Nuxeo repository is taken from the Seam
context and passed as the property with name "coreSession".

Page Providers without Content Views

© Page providers are available in Nuxeo since version 5.4.

Content views are very linked to the Ul rendering as they hold pure Ul configuration and need the JSF context to
resolve variables. Sometimes it is interesting to retrieve items using page providers, but in a non-Ul context (event

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 154

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

listener), or in a non-JSF Ul context (webengine).

Page providers can be registered on their own service, and queried outside of a JSF context. These page providers
can also be referenced from content views, to keep a common definition of the provider.

Here is a sample page provider definition:

<extension target="org.nuxeo.ecm.platform.query.api.PageProviderService"
point="providers">

<coreQueryPageProvider name="TREE_CHILDREN_PP">

<pattern>
SELECT * FROM Document WHERE ecm:parentId = ? AND ecm:isProxy = O AND
ecm:mixinType = 'Folderish' AND ecm:mixinType != 'HiddenInNavigation'
AND ecm:isCheckedInVersion = 0 AND ecm:currentLifeCycleState !=
'deleted’

</pattern>

<sort column="dc:title" ascending="true" />
<pageSize>50</pageSize>
</coreQueryPageProvider>

</extension>

This definition is identical to the one within a content view, except it cannot use EL expressions for variables
resolution. A typical usage of this page provider would be:

PageProviderService ppService = Framework.getService(PageProviderService.class);
Map<String, Serializable> props = new HashMap<String, Serializable>();
props.put (CoreQueryDocumentPageProvider.CORE_SESSION_PROPERTY,

(Serializable) coreSession);
PageProvider<DocumentModel> pp = (PageProvider<DocumentModel>)
ppService.getPageProvider (

"TREE_CHILDREN_PP", null, null, null, props,

new Object[] { myDoc.getId() });
List<DocumentModel> documents = pp.getCurrentPage();

Here you can see that the page provider properties (needed for the query to be executed) and its parameters
(needed for the query to be built) cannot be resolved from EL expressions: they need to be given explicitely to the
page provider service.

A typical usage of this page provider, referenced in a content view, would be:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 155

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<extension target="org.nuxeo.ecm.platform.ui.web.ContentViewService"
point="contentViews">

<contentView name="TREE CHILDREN CV">
<title>tree children</title>

<pageProvider name="TREE_CHILDREN_PP">
<property name="coreSession">#{documentManager}</property>
<property name="checkQueryCache">true</property>
<parameter>#{currentDocument.id}</parameter>
</pageProvider>

</contentView>

</extension>

Here you can see that properties and parameters can be put on the referenced page provider as content views all
have a JSF context.

Views on documents

First of all, we have to make the difference between a view in a standard JSF way (navigation case view id,
navigation case output) and views in Nuxeo EP (document type view, creation view)

Standard JSF navigation concepts

A standard JSF navigation rule can be defined in the 0SGI-INF/deployment-fragment.xml files, inside the
faces-config#NAVIGATION directive.

Example of a navigation rule case definitions:

<extension target="faces-config#NAVIGATION">

<navigation-case>
<from-outcome>create_document</from-outcome>
<to-view-id>/create_document.xhtml</to-view-id>
<redirect />

</navigation-case>

<navigation-case>
<from-outcome>view_documents</from-outcome>
<to-view-id>/view_documents.xhtml</to-view-id>
<redirect />

</navigation-case>

</extension>

Nuxeo EP views

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 156

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

A certain Nuxeo document type, can have defined a default view (used to view/edit the document) and a create view
(used to create the document). These views are specified in the 0SGI-INF/ecm-types-contrib.xml file, asin
the following example.

<extension target="org.nuxeo.ecm.platform.types.TypeService" point="types">
<type id="Workspace">
<label>Workspace</label>
<icon>/icons/workspace.gif</icon>
<icon-expanded>/icons/workspace_open.gif</icon-expanded>
<default-view>view_documents</default-view>
<create-view>create_workspace</create-view>
</type>
</extension>

The default view of a document is rendered as a list of tabs. As mentioned before, the document tabs are defined as
actions in the 0OSGI-INF/actions-contrib.xml file, having as category VIEW_ACTION_LIST. A tab can be
added to a document default view as shown in the following example.

<extension target="org.nuxeo.ecm.platform.actions.ActionService" point="actions">
<action id="TAB_EDIT" link="/incl/tabs/document_edit.xhtml" enabled="true"
order="20" label="action.view.edit" icon="/icons/file.gif">
<category>VIEW_ACTION_LIST</category>
<filter-id>edit</filter-id>
<filter-id>mutable_document</filter-id>
</action>
</extension>

Versioning

This section describes the versioning model of Nuxeo 5.4 and later releases.

Concepts

Placeful. A placeful document is one which is stored in a folder, and therefore has a parent in which it is
visible as a child.

Placeless. A placeless document isn't stored in a given folder, it's just available in the storage through its id.
Having no parent folder it doesn't inherit any security, so it is usually only accessible by unrestricted code.
Working Copy. The document that you edit. It is usually stored in a Workspace's folder but this is just
convention. It is also often called the Live Document. There is at most one Working Copy per version series.
In other systems it is also called the Private Working Copy because only the user that created it can work on
it; this is looser in Nuxeo EP.

Version. An immutable, archived version of a document. It is created from a working copy by a check in op
eration.

Version Number. The label which is uniquely attached to a version. It formed of two integers separated by a
dot, like "2.1". The first integer is the major version number, the second one is the minor version number.
Major Version. A version whose minor version number is 0. It follows that a minor version is a version whose
minor version number is not 0.

Version Series. The list of versions that have been successively created from an initial working copy. The
version series id is a unique identifier that is shared by the working copy and all the versions of the version

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 157

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

series.

® Versionable Document. The document which can be versioned, in effect the working copy. Up to Nuxeo
EP 5.4, the versionable document id is used as the version series id.

® Check In. The operation by which a new version is created from a working copy.

¢ Check Out. The operation by which a working copy is made available.

Check In and Check Out

"Check In" and "Check Out" in Nuxeo EP both refer to operations that can be carried out on documents, and to the
state a working copy can be in.

Checked In and Checked Out states

A working copy in the Checked Out state can be modified freely by users having access rights to the document. A
document ceases to be Checked Out when the Check In operation is invoked. After initial creation a document is in
the Checked Out state.

A working copy in the Checked In state is identical to the version that was created when the Check In operation was
invoked on the working copy. In the Checked In state, a working copy is (at low level) not modifiable. To be modified
it must be switched to the Checked Out state first. This latter operation is automatically done in Nuxeo EP 5.4 when
a document is modified.

Check In and Check Out operations

From a working copy in the Checked Out state, invoking the Check In operation does several things:

® the final version number is determined,
® anew version is created,
® the working copy is placed in the Checked In state.

When invoking the Check In operation, a flag is passed to indicate whether a major version or a minor version
should be created. Depending on whether the new version should be major or minor, the version number is
incremented differently; for instance, starting from a working copy with the version number "2.1" (displayed as
"2.1+"), a minor version would be created as "2.2" and a major version as "3.0".

Given a Checked In working copy, invoking the Check Out operation has little visible effect, it's just a state change
for the working copy. A "+" is displayed after the version number to make this apparent, see below.

In other systems than Nuxeo EP, the Check In operation that creates a new version removes the
Working Copy, whose role has been fulfilled. This is not the case in Nuxeo EP, where the
Working Copy remains in a special Checked In state. In these other systems, the Check Out
operation can also be invoked on a Version to create a new Working Copy (this assumes that
there is no pre-existing Working Copy in the system). This kind of operation will be made
available in future versions of Nuxeo EP but is not present at the moment.

Version number
The initial version number of a freshly created working copy is "0.0".

When displaying the version number for a Checked Out document, the version number is usually displayed with a
"+" following it, to show that it's not the final version number but that the working copy is modified and derived from

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 158

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

that version. The final version number will be determined at Check In time. The exception to this display rule is the
version "0.0", because displaying "0.0+" would be redundant and misleading as there is actually no previously
archived "0.0" version from which it is derived.

The version number is changed by a Check In operation; either the minor version number is incremented, or the
major version number is incremented and the minor version number is set to 0.

Plugging in a new VersioningService implementation

For advanced uses, it's possible to plug in a new VersioningService implementation to define what happens at
creation, save, check in and check out time. See the Javadoc and the versioningService extension point documentat
ion for more about this.

Thumbnail
This section describes the versioning model of Nuxeo 5.7.1 and later releases.

In this chapter, a thumbnail is reduced-size version of picture used to help in recognizing and organizing. It will stand
for any kind of document according to the type and/or facet.

Custom thumbnail factories can be contributed to the thumbnail service, using its extension point. Thumbnails are
then available through this service to define how they will be computed and fetched.

Thumbnail service architecture

In this section

Thumbnail service architecture
Reqister a new thumbnail factory
Picture thumbnail example
Thumbnail Architecture

Thumbnail components:

®* Thumbnail service

The service that handle thumbnail factories contributions:

Interface: ThumbnailService

® Implementation: ThumbnailServiceImpl

¢ Component: org.nuxeo.ecm.core.api.thumbnail.ThumbnailService
¢ Extension point:thumbnailFactory

® Default Thumbnail factories

® ThumbnailDocumentFactory: Default thumbnail factory for all non folderish documents Return the
main blob converted in thumbnail or get the document big icon as a thumbnail.

® ThumbnailFolderishFactory: Default thumbnail factory for all folderish documents.

® ThumbnailPictureFactory: Default Picture thumbnail factory

® ThumbnailVideoFactory: Video thumbnail factory from DAM

® ThumbnailAudioFactory: Audio thumbnail factory from DAM

® Thumbnail listeners

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 159

http://doc.nuxeo.com/x/GATF
http://community.nuxeo.com/api/nuxeo/5.6/javadoc/org/nuxeo/ecm/core/versioning/VersioningService.html
http://community.nuxeo.com/api/nuxeo/5.6/javadoc/org/nuxeo/ecm/core/versioning/VersioningService.html
http://explorer.nuxeo.org/nuxeo/site/distribution/Nuxeo%20DM-5.6/viewExtensionPoint/org.nuxeo.ecm.core.versioning.VersioningService--versioningService
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/core/api/thumbnail/ThumbnailService.html
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/core/api/thumbnail/ThumbnailServiceImpl.html
http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewComponent/org.nuxeo.ecm.core.api.thumbnail.ThumbnailService
http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewExtensionPoint/org.nuxeo.ecm.core.api.thumbnail.ThumbnailService--thumbnailFactory
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/platform/thumbnail/factories/ThumbnailDocumentFactory.html
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/platform/thumbnail/factories/ThumbnailFolderishFactory.html
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/platform/picture/thumbnail/ThumbnailPictureFactory.html
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/platform/video/adapter/ThumbnailVideoFactory.html
https://connect.nuxeo.com/nuxeo/site/marketplace/package/nuxeo-dam
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/platform/audio/extension/ThumbnailAudioFactory.html
https://connect.nuxeo.com/nuxeo/site/marketplace/package/nuxeo-dam

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

® UpdateThumbnaillistener: Thumbnail listener handling creation and update document event to
store doc thumbnail preview (only for DocType File).

® checkBlobUpdateListener: Thumbnail listener handling document blob update and checking
changes. Fire an event afterBlobUpdateCheck if it's the case that will trigger UpdateThumbnaill.ist
ener.

© Here are Nuxeo thumbnail factory implementations on github:

ThumbnailDocumentFactory
® ThumbnailVideoFactory

® ThumbnailAudioFactory
® ThumbnailPictureFactory

Register a new thumbnail factory
A thumbnail factory can be registered using the following example extension:
<extension target="org.nuxeo.ecm.core.api.thumbnail.ThumbnailService"
point="thumbnailFactory">
<thumbnailFactory name="thumbnailFolderishFactory" facet="Folderish"

factoryClass="org.nuxeo.ecm.platform.thumbnail.factories.ThumbnailFolderishFactory"

/>
<thumbnailFactory name="thumbnailAudioFactory" docType="Audio"
factoryClass="org.nuxeo.ecm.platform.audio.extension.ThumbnailAudioFactory" />
</extension>

The above thumbnail factories will be used to compute and fetch specific thumbnails for folderish documents on one
hand, audio documents on the other hand. Here are its properties:

® docType: string identifying the related document type. In the example, the type is "Audio".
® facet: string identifying the related document facet. In the example, the facet is "Folderish".
¢ factoryClass: string representing the class name of the factory to use.

Each factory should implement the interface ThumbnailFactory. This interface contract contains two methods to
implement:

® Blob getThumbnail(DocumentModel doc, CoreSession session) -> Get the document thumbnail (related to
the doc type/facet)

¢ Blob computeThumbnail(DocumentModel doc, CoreSession session) -> Compute the thumbnail (related to
the document type/facet)

The listener UpdateThumbnailListener is calling YourFactory#compute Thumbnail that allows developers to
compute the document blob when creating a document and after updating it (if the blob related to this document has
been changed).

When computing your thumbnail, UpdateThumbnaillListener store it into a specific metadata thumb:thumbnail

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 160

http://doc.nuxeo.com/x/GATF
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/platform/thumbnail/listener/UpdateThumbnailListener.html
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/platform/thumbnail/listener/CheckBlobUpdateListener.html
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/platform/thumbnail/ThumbnailConstants.EventNames.html#afterBlobUpdateCheck
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/platform/thumbnail/listener/UpdateThumbnailListener.html
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/platform/thumbnail/listener/UpdateThumbnailListener.html
https://github.com/nuxeo/nuxeo-features/blob/975307a038d244caf45dfb575810e170b884a515/nuxeo-thumbnail/src/main/java/org/nuxeo/ecm/platform/thumbnail/factories/ThumbnailDocumentFactory.java
https://github.com/nuxeo/nuxeo-platform-video/blob/master/nuxeo-platform-video-core/src/main/java/org/nuxeo/ecm/platform/video/adapter/ThumbnailVideoFactory.java
https://github.com/nuxeo/nuxeo-platform-audio/blob/master/nuxeo-platform-audio-core/src/main/java/org/nuxeo/ecm/platform/audio/extension/ThumbnailAudioFactory.java
https://github.com/nuxeo/nuxeo-features/blob/f4219820f3d8e342854499bccc409e8133535209/nuxeo-platform-imaging/nuxeo-platform-imaging-core/src/main/java/org/nuxeo/ecm/platform/picture/thumbnail/ThumbnailPictureFactory.java
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/core/api/thumbnail/class-use/ThumbnailFactory.html
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/platform/thumbnail/listener/UpdateThumbnailListener.html
http://community.nuxeo.com/api/nuxeo/5.7/javadoc/org/nuxeo/ecm/platform/thumbnail/listener/UpdateThumbnailListener.html
http://thumbthumbnail

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

provided by the following schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:nxs="http://www.nuxeo.org/ecm/schemas/thumbnail”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"”

targetNamespace="http://www.nuxeo.org/ecm/schemas/thumbnail">
<xs:include schemalocation="core-types.xsd" />

<xs:element name="thumbnail" type="nxs:content" />

</xs:schema>

This process can be useful to avoid lazy loading when display documents list.

Picture thumbnail example

Here is an example with the picture thumbnail factory, which is fetching a image existing into the picture schema:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 161

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

import
import
import
import
import
import
import
import

public

org.nuxeo.common.utils.FileUtils;
org.nuxeo.ecm.core.api.Blob;
org.nuxeo.ecm.core.api.CoreSession;
org.nuxeo.ecm.core.api.DocumentModel;
org.nuxeo.ecm.core.api.impl.blob.FileBlob;
org.nuxeo.ecm.platform.picture.api.PictureView;
org.nuxeo.ecm.platform.picture.api.adapters.MultiviewPicture;
org.nuxeo.ecm.platform.types.adapter.TypeInfo;

class ThumbnailPictureFactory implements ThumbnailFactory {

@QOverride
public Blob getThumbnail (DocumentModel doc, CoreSession session)

throws ClientException {
if (!doc.hasFacet("Picture")) {
throw new ClientException("Document is not a picture");
}
// Choose the nuxeo default thumbnail of the picture views if exists
MultiviewPicture mViewPicture = doc.getAdapter (MultiviewPicture.class);
PictureView thumbnailView = mViewPicture.getView("Small");
if (thumbnailView == null || thumbnailView.getBlob() == null) {
// try thumbnail view
thumbnailView = mViewPicture.getView("Thumbnail");
if (thumbnailView == null || thumbnailView.getBlob() == null) {
TypeInfo docType = doc.getAdapter (TypeInfo.class);
return new FileBlob(
FileUtils.getResourceFileFromContext ("nuxeo.war"
+ File.separator + docType.getBigIcon()));

}
}
return thumbnailView.getBlob();
}
@QOoverride

public Blob computeThumbnail (DocumentModel doc, CoreSession session) {

return null;

And then the usage of ThumbnailAdapter:

Copyright © 2010-2013 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

162

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

import org.nuxeo.common.utils.FileUtils;

import org.nuxeo.ecm.core.api.Blob;

import org.nuxeo.ecm.core.api.CoreSession;

import org.nuxeo.ecm.core.api.DocumentModel;

import org.nuxeo.ecm.core.api.blobholder.BlobHolder;
import org.nuxeo.ecm.core.api.impl.DocumentModelImpl;
import org.nuxeo.ecm.core.api.impl.blob.FileBlob;

import org.nuxeo.ecm.core.api.thumbnail.ThumbnailAdapter;
import org.nuxeo.ecm.core.api.CoreSession;

import com.google.inject.Inject;

@Inject
CoreSession session;

// Create a picture

DocumentModel root = session.getRootDocument();

DocumentModel picture = new DocumentModelImpl (root.getPathAsString(),"pic",
"Picture");

picture.setPropertyValue("picture:views", (Serializable) createViews());
picture = session.createDocument (picture);

session.save();

// Using BlobHolder adapter

BlobHolder bh = picture.getAdapter (BlobHolder.class);

Blob blob = new FileBlob(getFileFromPath("test-data/big_nuxeo_logo.gif"),
"image/gif",null, "big_ nuxeo_logo.gif", null);

bh.setBlob(blob);

session.saveDocument (picture);

session.save();

// Using ThumbnailAdapter

ThumbnailAdapter pictureThumbnail = picture.getAdapter (ThumbnailAdapter.class);
Blob thumbnail = pictureThumbnail.getThumbnail (session);

String fileName = thumbnail.getFilename();

© Hereis a Nuxeo blog post related to Nuxeo Thumbnail service.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

163

http://doc.nuxeo.com/x/GATF
http://www.nuxeo.com/blog/development/2012/06/qa-friday-thumbnails-pdf-psd-documents/

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

©@ Default Nuxeo thumbnail factories fall back on Nuxeo Document Biglcon if no thumbnail has
been found.

Here is a way to find it properly:

Blob getDefaultThumbnail (DocumentModel doc) {
if (doc == null) {
return null;
}
TypeInfo docType = doc.getAdapter(TypeInfo.class);
String iconPath = docType.getBigIcon();
if (iconPath == null) {
iconPath = docType.getIcon();

}

if (iconPath == null) {
return null;

}

FacesContext ctx = FacesContext.getCurrentInstance();
if (ctx == null) {

return null;
}

try {
InputStream iconStream =

ctx.getExternalContext().getResourceAsStream(
iconPath);
if (iconStream != null) {
return new FileBlob(iconStream);
}
} catch (IOException e) {
log.warn(String.format (
"Could not fetch the thumbnail blob from icon
path 'ss'",
iconPath), e);

}

return null;

Thumbnail Architecture

We can see here the ThumbnailAdapter to use and factories like the default one ThumbnailDocumentFactory
and ThumbnailPictureFactory:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 164

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

ThumbnailDocumentFactory

m! getThumbnail(DocumentModel, CoreSession) Blob
m) computeThumbnail(DocumentModel, CoreSession) Blob
m' getDefaultThumbnail(DocumentiModel) Blob

C | ThumbnailPictureFactory

m) getThumbnail(DocumentModel, CoreSession)

m/ computeThumbnail(DocumentMadel, CoreSession)

I ThumbnailFactory
m! getThumbnail(DocumentModel, CoreSession)

m) computeThumbnail{DocumentModel, CoreSession)

1
1

C ' ThumbnailServiceImpl

m registerContribution{Object, String, ComponentInstance)

m) unregisterContribution{Object, String, ComponentInstance)
m getFactoryByDocTypeNames()

m) getFactoryByFacetMames()

m getDefaultFactory ()

m) getThumbnail(DocumentModel, CoreSession)

m' computeThumbnail{DocumentModel, CoreSession)

m) getThumbnailFactory(DocumentModel, CoreSession)

Blob
Blob

woid

woid

Set<5tring=
Set<5tring=>
ThumbnailFactory
Blob

Blob
ThumbnailFactory

T
|
|

hJ

I ThumbnailService
m) getThumbnail(DocumentModel, CoreSession) Blob
m! computeThumbnail(DocumentModel, CoreSession) Blob
ﬂ:&
|
|
)Tl ailAdapte
m) getThumbnail (CoreSession) Blob
m save(CoreSession) void
m) getld() String
m' computeThumbnail(CoreSession) Blob

Blob
Blob

Powered by yFiles
User Actions (links, buttons, icons, tabs)

In this chapter, an action will stand for any kind of command that can be triggered via user interface interaction. In
other words, it will describe a link and other information that may be used to manage its display (the link label, an

icon, security information for instance).

Custom actions can be contributed to the actions service, using its extension point. Their description is then

available through this service to control where and how they will be displayed.

Register a new action

An action can be registered using the following example extension:

Copyright © 2010-2013 N

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

uxeo.

http://doc.nuxeo.com/x/GATF
http://www.yworks.com

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<extension target="org.nuxeo.ecm.platform.actions.ActionService"
point="actions">

<action id="logout" link="#{loginLogoutAction.logout}"
label="command.logout">
<category>USER_MENU_ACTIONS</category>

</action>

</extension>

The above action will be used to display a "logout" link on the site. Here are its properties:

id: string identifying the action. In the example, the action id is "logout".

label: the action name that will be used when displaying the link. In the example, the label is
"command.logout". This label is a message that will be translated at display.

link: string representing the command the action will trigger. This string may represent a different action given
the template that will display the action. In the example, a JSF command link will be used, so it represents an
action method expression. The seam component called "loginLogoutAction" holds a method named "logout"
that will perform the logout and return a string for navigation.

category: a string useful to group actions that will be rendered in the same area of a page. An action can
define several categories. Here, the only category defined is "USER_SERVICES". It is designed to group all
the actions that will be displayed on the right top corner of any page of the site.

Other properties can be used to define an action. They are listed here but you can have a look at the main actions
contributions file for more examples: nuxeo-platform-webapp-core/srs/main/resources/OSGI-INF/actions-contrib.xml.

filter-ids: id of a filter that will be used to control the action visibility. An action can have several filters: it is
visible if all its filters grant the access.

filter: a filter definition can be done directly within the action definition. It is a filter like others and can be
referred by other actions.

icon: the optional icon path for this action.

confirm: an optional Javascript confirmation string that can be triggered when executing the command.
order: an optional integer used to sort actions within the same category. This attribute may be deprecated in
the future.

enabled: boolean indicating whether the action is currently active. This can be used to hide existing actions
when customizing the site behavior.

immediate (available since 5.4.2): an optional boolean to execute action immediately, without validating the
form

type (available since 5.6): an optional typing of the action, so that actions needing different kinds of rendering
can be mixed up in the same category (see #Adapt templates to display an action below)

properties (available since 5.6): tag that allows to attach any kind of named string, list or map-like property to
the action.

Actions extension point provides merging features: you can change an existing action definition in your custom
extension point provided you use the same identifier. Properties holding single values (label, link for instance) will be
replaced using the new value. Properties holding multiple values (categories, filters) will be merged with existing
values.

Manage category to display an action at the right place

Actions in the same category are supposed to be displayed in the same area of a page.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 166

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

The complete list of available categories can be found by checking action contributions on the explorer.

Here are listed the main default categories if you want to add an action there:

® USER_MENU_ACTIONS (and old category USER_SERVICES): used to display actions in the menu
presenting current user name, visible in the header of every page. The link attribute should look like a JSF

action command link. See the example above.

nuxeo - DM Home Document Management solen _ Search e
*) » Default domain » Workspaces > Marketing B H8
L < @)
Marketing =
(3 Default domain Content | Edit Alerts History Manage
Sections
{1 Templates =
£} Template vead limpaatic ttems/page | 20 %] =
[Workspaces R
Filter
WorkList | Clipboard
g i Version
57 uxeo DAM 1.1 User Guide =] Title ¢ Modified $ Last contributor & Author & State &
o European press releases 5/31/11 5:19 PM John Doe John Doe Project
[y Clear 1ist —
o US Press releases 5/31/11 5:19 PM John Doe John Doe Project
% export o 2P
[Move in current folder
[Paste in current falder
%) Export to XML

* DOCUMENT_UPPER_ACTION: actions available on documents, above tabs.

nuxeo - DM Home Document Management 2 _ il Advanced search
*] > Default domain > Workspaces > Marketing 5 =i}
. d @
Marketing =
(@ Default domain Content | Edit Alerts History Manage
Sections
[Templates <
- ° New Importa file Items/page [20 [+ = p:N
[Workspaces —_—
Filter
WorkList | Clipboard
=) ’ § v
(5| oceo DAM 1.1 User Guide =] Title & Modified & Last contributor & Author & ersion State O
8 European press releases 5/31/11 5:19 PM John Doe John Doe Project
[crear tist = .
=] US Press releases 5/31/11 5:19 PM John Doe John Doe Project
#) Export o ZIP

2 Move in current folder
[Paste in current foider

%) Export to XML

®* VIEW_ACTION_LIST: used for tabs displayed on every document.
As each tab is not displayed in a different page, but just includes a specific template content in the middle of

the page, the link attribute has to be a template path. For instance:

<action id="TAB_VIEW" link="/incl/tabs/document_view.xhtml" enabled="true"
order="0" label="action.view.summary">
<category>VIEW_ACTION_LIST</category>
<filter-id>view</filter-id>

</action>

<action id="TAB_CONTENT" link="/incl/tabs/document_content.xhtml" order="10"
enabled="true" label="action.view.content">
<category>VIEW_ACTION_LIST</category>
<filter-id>view_content</filter-id>

</action>

* SUBVIEW_UPPER_LIST: used to display actions just below a document tabs listing.

Copyright © 2010-2013 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 167

http://doc.nuxeo.com/x/GATF
http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewExtensionPoint/org.nuxeo.ecm.platform.actions.ActionService--actions

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

nuxeo - DM Home Document Management 2 _ S Advanced search
B4&

*] > Default domain > Workspaces > Marketing

. @ @ .
Marketing =
(@ Default domain Content | Edit Alerts History Manage
Sections
{2 Templates =
= ° New Importa file ltems/page | 20 [] = 5
[E3 Workspaces —
Filter
Worklist | Clipboard
O . - " —
(]| Muxeo DAM 1.1 User Gulde =] Title & Modified & Last contributor O Author & ersion State &
=] European press releases 5/31/11 5:19 PM John Doe John Doe Project
[crear nist = .
=] US Press releases 5/31/11 5:19 PM John Doe John Doe Project
%) Export o ZIP

[Move in current folder
[Paste in current folder
%) Export to XML

As USER_SERVICES, these actions will be displayed using a command link, so the link attribute has to be
an action method expression. For instance:

<action id="newSection" link="#{documentActions.createDocument('Section’')}"
enabled="true" label="command.create.section"
icon="/icons/action_add.gif">
<category>SUBVIEW_UPPER_LIST</category>
<filter id="newSection">
<rule grant="true">
<permission>AddChildren</permission>
<type>SectionRoot</type>
</rule>
</filter>
</action>
<action id="newDocument" link="select_document_type" enabled="true"
label="action.new.document"” icon="/icons/action_add.gif">
<category>SUBVIEW_UPPER_LIST</category>
<filter-id>create</filter-id>
</action>

® CURRENT_SELECTION_LIST: used to display actions available on content views (copy, paste, delete,

nuxeo - DM Home Document Management 1 _ Elall] Advanced search
] - Default damain > Workspaes > Marketing =
v ¢ @ .
Marketing =
(@ Default domain Content | Edit Alerts History Manage
Sections
{2 Templates =
= u New Import a file items/page [20 [3] e
[E3 Workspaces —
Filter
Worklist | Clipboard
O il Version
57 Nuxeo DAM 1.1 User Guide =] Title & Modified £ Last contributor & Author ¢ State
=] European press releases 5/31/11 5:19 PM John Doe John Doe Project
[crear tist —
=] US Press releases 5/31/11 5:19 PM John Doe John Doe Project
%) Export 0 ZIP
[Move in current folder
(@ Paste in current folder
#) Export to XML

Manage filters to control an action visibility

An action visibility can be controlled using filters. An action filter is a set of rules that will apply - or not - given an
action and a context.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 168

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Filters can be registered using their own extension point, or registered implicitly when defining them inside of an
action definition.

Example of a filter registration:

<filter id="view_content">
<rule grant="true">
<permission>ReadChildren</permission>
<facet>Folderish</facet>

</rule>
<rule grant="false">
<type>Root</type>

</rule>

</filter>

Example of a filter registration inside an action registration

<action id="newSection" link="#{documentActions.createDocument('Section’')}"
enabled="true" label="command.create.section"
icon="/icons/action_add.gif">
<category>SUBVIEW_UPPER_LIST</category>
<filter id="newSection">
<rule grant="true">
<permission>AddChildren</permission>
<type>SectionRoot</type>
</rule>
</filter>
</action>

A filter can accept any number of rules. It will grant access to an action if, among its rules, no denying rule
(grant=false) is found and at least one granting rule (grant=true) is found. A general rule to remember is that if you
would like to add a filter to an action that already has one or more filters, it has to hold constraining rules: a granting
filter will be ignored if another filter is already too constraining.

If no granting rule (grant=true) is found, the filter will grant access if no denying rule is found. If no rule is set, the
filter will grant access by default.

The default filter implementation uses filter rules with the following properties:

grant: boolean indicating whether this is a granting rule or a denying rule.

permission: permission like "Write" that will be checked on the context for the given user. A rule can hold
several permissions: it applies if user holds at least one of them.

facet: facet like "Folderish" that can be set on the document type (org.nuxeo.ecm.core.schema.types.
Type) to describe the document type general behavior. A rule can hold several facets: it applies if current
document in context has at least one of them.

condition: EL expression that can be evaluated against the context. The Seam context is made available for
conditions evaluation. A rule can hold several conditions: it applies if at least one of the conditions is verified.
type: document type to check against current document in context. A rule can hold several types: it applies if
current document is one of them. The fake 'Server' type is used to check the server context.

schema: document schema to check against current document in context. A rule can hold several schemas: it
applies if current document has one of them.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 169

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

® group: group like "members" to check against current user in context. A rule can hold several groups: it
applies if current user is in one of them.

Filters do not support merging, so if you define a filter with an id that is already used in another contribution, only the
first contribution will be taken into account.

In EL expressions representing conditions, Seam component names can only be used when
placed at the beginning of the expression. As a result, it is not possible to use several seam
components in a single expression.

Adapt templates to display an action

Since 5.6, an action can define the way it will be rendered by using the "type" attribute. This type will be checked
when using the template /incl/action/generic_action_template.xhtml to display the actions.

Default type attributes include:

¢ link: will be used to display a command link or command button, so the "link" attribute should resolve to a JSF
action. The String property named "styleClass" can be used to customize rendering. The String property
"onclick" can also be used to perform additional JS calls when clicking on the link.

® bare_link: will be used to display a bare link (using the h:outputLink tag) so the "link" attribute should resolve
to a URL. The String property "target" can also be used (set to "_blank" to open the link in a new window, for
instance). Properties "styleClass" and "onclick" can also be used.

® fancybox: will be used to open a fancy box when clicking on the button. The String properties "include" or
"iframe" can be used to display the fancy box content. Properties "styleClass" and "onclick" can also be used.
Recommandation is to use an iframe if you'd like the fancy box content to hold forms, buttons, anything that
needs a submit, and handle closing of the fancy box and re-render of the main window using JavaScript calls
(because the actions are already in a form, so additional forms in an include will not work as expected:
nesting forms is not supported by JSF and would produce an invalid DOM anyway)

* widget: this one may be a difficult to catch, but displaying a widget within action is also an interesting use
case, especially if all other actions are also widgets. See this how-to for instance. The String property
"widgetName" is needed to lookup the widget to render. Optional property "widgetMode" (defaulting to "view")
can also be used, as well as "widgetCategory" if your widget is not using the default category. Display options
"displayActionLabel" and "displayWidgetLabel" are also available (both defaulting to false). Note that the
template using actions with type "widget" should define a variable "fieldOrValue" for the widget to be mapped
to something (if it needs automatic field resolution from it). For more information about widgets, see this
documentation: Layouts (forms and views).

The template "generic_action_template.xhtml" also handle additional display options, for instance booleans
"hidelcon", "hideLabel", "useAjaxForm". You can refer to the template documentation and content for more
information.

A typical usage of this template would be:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 170

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/NXDOC/Layout+how-tos#Layouthow-tos-Howtoaddanewwidgettothedefaultsummarylayout?

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<nxu:set var="actions"
value="4#{webActions.getActionsList ('FOOTER')}" cache="true">
<c:forEach var="action" items="#{actions}" varStatus="status">
<ui:decorate template="/incl/action/generic_action_template.xhtml" />
<c:if test="#{not status.last}">
<h:outputText value=" | " />
</c:if>
</c:forEach>
</nxu:set>

Before 5.6, it is important to understand that an action does not define the way it will be rendered: This is left to
pages, templates and other components displaying it. Most of the time, actions will be rendered as command links
or command buttons.

For instance, actions using the USER_SERVICES category will be rendered as action links:

<nxu:set var="actions"
value="4#{webActions.getActionsList ('USER_SERVICES')}"
cache="true">
<nxu:dataList layout="simple" var="action" value="#{actions}"
rowIndexVar="row" rowCountVar="rowCount">
<h:outputText value=" | " rendered="#{row!=(rowCount-1)}" />
<nxh:commandLink action="#{action.getLink()}">
<t:htmlTag value="br" rendered="#{row==(rowCount-1)}" />
<h:outputText value="#{messages[action.label]}" />
</nxh:commandLink>
</nxu:dataList>
</nxu:set>

The nxu:set tag is only used to retrieve the list of actions declared for the USER_SERVICES category. The
nxh:commandLink is used instead of a simple h.commandLink so that it executes commands that where described
as action expression methods.

Another use case is the document tabs: actions using the VIEW_ACTION_LIST category will be rendered as action
links too, but actions are managed by a specific seam component that will hold the information about the selected
tab. When clicking on an action, this selected tab will be changed and the link it points to will be displayed.

Related sections

User Actions (links, buttons, icons, tabs) (Nuxeo Enterprise Platform (EP))

About workflows and business logic (Nuxeo Studio)

Events and Listeners

Events and event listeners have been introduced at the Nuxeo core level to allow pluggable behaviors when
managing documents (or any kinds of objects of the site).

Whenever an event happens (document creation, document modification, relation creation, etc...), an event is sent
to the event service that dispatches the notification to its listeners. Listeners can perform whatever action it wants
when receiving an event.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 171

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/Studio/About+workflows+and+business+logic

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Concepts

A core event has a source which is usually the document model currently being manipulated. It can also store the
event identifier, that gives information about the kind of event that is happening, as well as the principal connected
when performing the operation, an attached comment, the event category, etc.

Events sent to the event service have to follow the org.nuxeo.ecm.core.event.Event interface.

A core event listener has a name, an order, and may have a set of event identifiers it is supposed to react to. Its
definition also contains the operations it has to execute when receiving an interesting event.

Event listeners have to follow the org.nuxeo.ecm.core.event.EventListener interface.

Several event listeners exist by default in the nuxeo platform, for instance:

® DublinCoreListener: it listens to document creation/modification events and sets some Dublin Core
metadata accordingly (date of creation, date of last modification, document contributors...)

® DocUIDGeneratorListener: it listens to document creation events and adds an identifier to the document
if an UID pattern has been defined for this document type.

® DocVersioningListener: it listens to document versioning change events and changes the document version
numbers accordingly.

In this section

Concepts
Registering an Event Listener

Processing an Event using an Event Listener
Sending an Event

Handling errors

Common Events

Basic Events

Copy/Move Events

Versioning Events

Publishing Events

® Asynchronous vs Synchronous listeners
® Performances and monitoring

Registering an Event Listener

Event listeners can be registered using extension points. Here are example event listeners registrations from Nuxeo
EP:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 172

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<component name="DublinCoreStorageService">
<extension target="org.nuxeo.ecm.core.event.EventServiceComponent"
point="listener">
<listener name="dclistener" async="false" postCommit="false" priority="120"
class="org.nuxeo.ecm.platform.dublincore.listener.DublinCoreListener">
</listener>
</extension>
</component>

<component name="org.nuxeo.ecm.platform.annotations.repository.listener">
<extension target="org.nuxeo.ecm.core.event.EventServiceComponent"
point="listener">
<listener name="annotationsVersionEventListener" async="true" postCommit="true"

class="org.nuxeo.ecm.platform.annotations.repository.service.VersionEventListener">
<event>documentCreated</event>
<event>documentRemoved</event>
<event>versionRemoved</event>
<event>documentRestored</event>

</listener>
</extension>
</component>

When defining an event listener, you should specify:

a name, useful to identify the listener and let other components disable/override it,

whether the listener is synchronous or asynchronous (default is synchronous),

whether the listener runs post-commit or not (default is false),

an optional priority among similar listeners,

the implementation class, that must implement org.nuxeo.ecm.core.event.EventListener,
an optional list of event ids for which this listener must be called.

There are several kinds of listeners:

synchronous inline listeners are run immediately in the same transaction and same thread, this is useful
for listeners that must modify the state of the application like the beforeDocumentModification event.
synchronous post-commit listeners are run after the transaction has committed, in a new transaction but in
the same thread, this is useful for logging.

asynchronous listeners are run after the transaction has committed, in a new transaction and a separate
thread, this is useful for any long-running operations whose result doesn't have to be seen immediately in the
user interface.

Processing an Event using an Event Listener

Here is a simple event listener:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 173

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

import org.nuxeo.ecm.core.event.Event;

import org.nuxeo.ecm.core.event.EventContext;

import org.nuxeo.ecm.core.event.EventListener;

import org.nuxeo.ecm.core.event.impl.DocumentEventContext;

public class BookEventListener implements EventListener {

public void handleEvent (Event event) throws ClientException {
EventContext ctx = event.getContext();
if (!(ctx instanceof DocumentEventContext)) {
return;

}

DocumentModel doc = ((DocumentEventContext) ctx).getSourceDocument();
if (doc == null) {
return;

}

String type = doc.getType();

if ("Book".equals(type)) {
process (doc) ;

public void process (DocumentModel doc) throws ClientException {

Note that if a listener expects to modify the document upon save or creation, it must use events emptyDocumentMo
delCreated or beforeDocumentModification, and not save the document, as these events are themselves fired
during the document save process.

If a listener expects to observe a document after it has been saved to do things on other documents, it can use
events documentCreated or documentModified.

Sending an Event

It is not as common as having new listeners, but sometimes it's useful to send new events. To do this you have to
create an event bundle containing the event, then send it to the event producer service:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 174

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

EventProducer eventProducer;
try {

eventProducer = Framework.getService(EventProducer.class);
} catch (Exception e) {

log.error("Cannot get EventProducer", e);

return;

DocumentEventContext ctx = new DocumentEventContext(session, session.getPrincipal(),
doc);
ctx.setProperty("myprop", "something");

Event event = ctx.newEvent("myeventid");

try {
eventProducer.fireEvent (event);

} catch (ClientException e) {
log.error("Cannot fire event", e);
return;

You can also have events be sent automatically at regular intervals using the Scheduling periodic events, see that
section for mor

Handling errors

Sometimes, you may want to handle errors that occurred in an inline listener in the Ul layer. This is a little bit tricky
but do-able.

In the listener, you should register the needed information in a place that is shared with the Ul layer.
You can use the document context map for this.

DocumentEventContext ctx = (DocumentEventContext)event.getContext();
DocumentModel doc = ctx.getSourceDocument();

ScopedMap data = doc.getContextData();

data.putScopedValue (MY_ERROR_KEY, "some info");

Another thing is to insure that the current transaction will be roll-backed. Marking the event as rollback
makes the event service throwing a runtime exception when returning from the listener.

TransactionHelper.setTransactionRollbackOnly();
event.markRollback();
throw new ClientException("rollbacking");

Then the error handling in the Ul layer can be managed like this

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 175

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

DocumentModel doc = ...;
try {
// doc related operations
} catch (Exception e) {
Serializable info = doc.getContextData(MY_ERROR_KEY);
if (info == null) {
throw e;

}
// handle code

Common Events

Any Nuxeo code can define its own events, but it's useful to know some of the standard ones that Nuxeo sends by
default.

Basic Events

emptyDocumentModelCreated: the data structure for a document has been created, but nothing is saved
yet. This is useful to provide default values in document creation forms.

documentCreated: a document has been created (this implies that a write to the database has occurred). Be
careful, this event is sent for all creations, including for new versions and new proxies.
beforeDocumentModification: a document is about to be saved after a modification. A synchronous listener
may update the DocumentModel but must not save it (this will be done automatically).

documentModified: a document has been saved after a modification.
beforeDocumentSecurityModification: a document's ACLs are about to change.
documentSecurityUpdated: a document's ACLs have changed.

aboutToRemove / aboutToRemoveVersion: a document or a version are about to be removed.
documentRemoved / versionRemoved: a document or a version have been removed.

documentLocked / documentUnlocked: a document has been locked or unlocked.

sessionSaved: the session has been saved (all saved documents are written to database).
lifecycle_transition_event: a transition has been followed on a document.

Copy/Move Events

aboutToCopy / aboutToMove: a document is about to be copied or moved.
documentCreatedByCopy: a document has been copied, the passed document is the new copy.
documentDuplicated: a document has been copied, the passed document is the original.
documentMoved: a document has been moved.

Versioning Events

incrementBeforeUpdate: a document is about to be snapshotted as a new version. The changes made to
the passed DocumentModel will be saved in the archived version but will not be seen by the main document
being versioned. This is useful to update version numbers and version-related information.
beforeRestoringDocument: a document is about to be restored.

documentRestored: a document has been restored.

Publishing Events

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 176

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Low-level events:

¢ documentProxyPublished: a proxy has been published (or updated).
¢ documentProxyUpdated: a proxy has been updated.
* sectionContentPublished: new content has been published in this section.

High-level events:

¢ documentPublished: a document has been published (event sent for the base document being published
and for the published document).

¢ documentWaitingPublication: a document has been published but is not approved yet (event sent for the
base document being published and for the published document)

¢ documentPublicationApproved: a document waiting for approval has been approved.

¢ documentPublicationRejected: a document waiting for approval has been rejected.

* documentUnpublished:

Asynchronous vs Synchronous listeners

Asynchronous listeners will run in a separated thread (actually in the Workmanager using a processing queue since
5.6): this means the main transaction, the one that raised the event, won't be blocked by the listener processing.

So, if the processing done by the listener may be long, this is a good candidate for async processing.

However, there are some impacts in moving a sync listener to an async one:

® the listener signature needs to change
* rather than receiving a single event, it will receive an EventBundle that contains all event inside the
transaction
® because the listener runs in a separated transaction it can not rollback the source transaction (it is too late
anyway)
® the listener code need to be aware that it may have to deal with new cases
® typically, the listener may receive an event about a document that has since then been deleted

However, it is easy to have a single listener class that exposes both interfaces and can be use both synchronously
and asynchronously.

Performances and monitoring
Using listeners, especially synchronous one may impact the global performance of the system.
Typically, having synchronous listeners that do long processing will reduce the scalability of the system.

In that kind of case, using asynchronous listener is the recommended approach:

® the interactive transaction is no longer tried to listener execution
* Workmanager allow to configure how many async listeners can run in concurrency

To monitor execution of the listeners, you can use the Admin Center / Monitoring / Nuxeo Event Bus to

® activate the tracking of listeners execution,
® see how much time is spent in each listener.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 177

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

System information
Activiy ,
@ Tracking on synchronous events processing s curenty acivated | Disable
Nuxeo Connect
@ Tracking on asynchronous events processing is currently activated | Disable
Update Center
Actve Threads)
Monitoring Number of queued events:0
OAuth / OpenSocial Staitcs on synchronous lsteners execution
Listr Number of cals Total tme
dcistener o ot cals 2ms 093%
worManagerCleanup WorkManagerCleanupListener 3calls oms 000%
3cals sims 2289
3cais oms 000%
BlogActontistener 3calls oms 000%
UL VideoCh 3calls oms 0.00%
Social Coliaboration Sociamorksp: 3cals oms 000%
pictureChangedLisiener PicureChangedListener 3calls oms 000%
opchainisener OperatonEventLisener o1 cals 160ms
ContertCreatontstener 91 cals oms 000%
DigestComputer o1 cals oms 000%
steCreatontistener SteActonListener 3calls oms 000%
mimetypelconUpdatar MimetypeiconUpdater acais oms 000%
momtquards GuardsCacheUpdater o1 cals oms 000%
himisanitzeristener o1 cals oms 000%
domaing 3cais oms 000%
documentemplate-deletonguard TemplateDeletonGuard o1 cals oms 000%
documentemplate-ni Templaeinitistener o1 cals 1ms 0475
meUpdater m meUpdater acais oms 000
e sl cals oms 000%
Retresh
Staitcs o asynchronous liseners execuion

For diagnostic and testing purpose, you can use the EventAdminService to activate / deactivate listeners one by
one.

The EventServiceAdmin is accessible :

® via Java API,
® via JMX.

Related pages

Events and Listeners (Nuxeo Enterprise Platform (EP))

How to modify a workflow variable outside of workflow context (Nuxeo Enterprise Platform (EP))

Performance recommendations (Nuxeo Enterprise Platform (EP))

Scheduling periodic events (Nuxeo Enterprise Platform (EP))

Search results optimizations (Nuxeo Enterprise Platform (EP))

Scheduling periodic events

The Scheduler Service is a Nuxeo Platform service to schedule events at periodic times. This is the best way in
Nuxeo Platform to execute things every night, every hour, every five minutes, or at whatever granularity you require.

Scheduler contribution

To schedule an event, you contribute a <schedule> to the schedule extension point of the org.nuxeo.ecm.co
re.scheduler.SchedulerService component.

In this section

® Scheduler contribution
® Cron expression
® Cron expression examples

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 178

http://doc.nuxeo.com/x/GATF
http://explorer.nuxeo.org/nuxeo/site/distribution/Nuxeo%20Platform-5.6/viewService/org.nuxeo.ecm.core.event.EventServiceAdmin
http://doc.nuxeo.com/display/ADMINDOC/Supervision

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Component name

Note that the name of the component has changed from org.nuxeo.ecm.platform.schedu
ler.core.service.SchedulerRegistryService in Nuxeo Platform 5.5 t0 org.nuxeo.e
cm.core.scheduler.SchedulerService in Nuxeo Platform 5.6.

A schedule is defined by:

id: an identifier,

username: the user under which the event should be executed,
event: the identifier of the event to execute,

eventCategory: the event category to use,

cronExpression: an expression to specify the schedule.

The id is used for informational purposes and programmatic unregistration.

If the username is missing, the event is executed as a system user, otherwise as that user. Note that since Nuxeo
EP 5.4.1 no password is needed (the login is done internally and does not need password).

The event specifies the event to execute. See the section about Events and Listeners for more.

The eventCategory is also used to specify the event, but usually it can be skipped.
The cronExpression is described in the following section.

Here is an example contribution:

<?xml version="1.0"?>
<component name="com.example.nuxeo.schedule.monthly stuff">
<extension target="org.nuxeo.ecm.core.scheduler.SchedulerService"
point="schedule">
<schedule id="monthly_ stuff">

<username>Administrator</username>
<eventId>doStuff</eventId>
<eventCategory>default</eventCategory>

<!-- Every first of the month at 3am -->
<cronExpression>0 0 3 1 * ?</cronExpression>
</schedule>
</extension>
</component>

Cron expression

A Scheduler cron expression is similar to a Unix cron expression, except that it has an additional seconds field that
isn't needed in Unix which doesn't need this kind of precision.

The expression is a sequence of 6 or 7 fields. Each field can hold a number or a wildcard, or in complex cases a
sequence of numbers or an additional increment specification. The fields and their allowed values are:

seconds minutes hours day of month day of week year
month

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 179

http://doc.nuxeo.com/x/GATF
http://en.wikipedia.org/wiki/Cron

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

0-59 0-59 0-23 1-31 1-12 1-7 or optional
SUN-SAT

A star ({}) can be used to mean "all values". A question mark (?) can be used to mean "no specific value"
and is allowed for one (but not both) of the *day of month and day of week fields.

Note that in the day of week, 1 stands for Sunday, 2 for Monday, 3 for Tuesday, etc. For clarity it's best to use SUN,
MON, TUE, etc.

A range of values can be specified using a dash, for instance 1-6 for the months field or MON-WED for the day of
week field.

Several values can be specified by separating them with commas, for instance 0,15, 30, 35 for the minutes field.

Repetitions can be specified using a slash followed by an increment, for instance 0/15 means start at 0 and repeat
every 15. This example means the same as the one above.

There's actually more but rarely used functionality; the Scheduler's full cron expression syntax is described in detail
in the Quartz CronExpression Javadoc. A tutorial is also available here.

Cron expression examples

Every first of the month at 3:15am:

0153 1 * ?

At 3:15am every day:

015 3 * * ?

Every minute starting at 2pm and ending at 2:15pm, every day:

0 0-15 14 * * ?

At 3:15am every Monday, Tuesday, Wednesday, Thursday and Friday:

0 15 3 ? * MON-FRI

At 3:15a, every 5 days every month, starting on the first day of the month:

015 3 1/5 * ?

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 180

http://doc.nuxeo.com/x/GATF
http://www.quartz-scheduler.org/docs/api/1.8.1/org/quartz/CronExpression.html
http://www.quartz-scheduler.org/docs/tutorials/crontrigger.html

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Tagging

The tag service provides the backbone of the tagging feature. Tags are keywords applied as metadata on
documents reflecting (for instance) the user opinion about that document. The tags are either categorizing the
content of the document (labels like "document management", "ECM", "complex Web application", etc. can be
thought as tags for Nuxeo), or they reflect the user feeling ("great", "user friendly", "versatile", etc.).

The tag service uses two important concepts: a tag object, and a tagging action. Both are represented as Nuxeo
documents.

A tag holds a label that does not contain any space ("documentmanagement", "webapplication", etc.). A tagging act
ion is a link between a given document and a tag, and belongs to a given user.

Tag service architecture
The following document types are defined by the tag service.

A Tag is a document type representing the tag itself (but not its association to specific documents). It contains the
usual dublincore schema, and in addition has a specific tag schema containing a tag:label string field.

A Tagging is a relation type representing the action of tagging a given document with a tag. (A relation type is a
document type extending the default Relation document type; it works like a normal document type except that it's
not found by NXQL queries on Document). The important fields of a Tagging document are relation:source which
is the document id, relation:target which is the tag id, and dc:creator which is the user doing the tagging action.

Both Tag and Tagging documents managed by the tag service are unfiled, which means that they don't have a
parent folder. They are therefore not visible in the normal tree of documents, only queries can find them. In addition
they don't have any ACLs set on them, which means that only a superuser (and the tag service internal code) can
access them.

Tag service features

The tag service is accessed through the org.nuxeo.ecm.platform.tag.TagService interface.

The tag service allows you to:

tag and untag a document,

get all the tags for a document,

get all the documents for a tag,

get the tag cloud for a set of documents,
get suggested tags for a given tag prefix.

A tag cloud is a set of weighted tags, the weights being integers representing the frequency of the tag.
The weights can be just a count of occurences, or can be normalized to the 0-100 range for easier display.

Directories and Vocabularies

In Nuxeo EP, a directory is a source of (mostly) table-like data that lives outside of the VCS document storage
database. A directory is typically a connection to an external data source that is also access by other processes than
Nuxeo EP itself (therefore allowing shared management and usage).

A vocabulary is a specialized directory with only a few important columns that are used by Nuxeo EP to display
things like menus and selection lists.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 181

http://doc.nuxeo.com/x/GATF
http://www.nuxeo.org/api/nuxeo/5.4/javadoc/org/nuxeo/ecm/platform/tag/TagService.html

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Table of contents:

SQL directories
LDAP directories
Multi-directories
References between directories
® Static reference as a dn-valued LDAP attribute
®* Dynamic reference as a IdapUrl-valued LDAP attribute
® | DAP tree reference
® Defining inverse references
* References defined by a many-to-many SQL table

SQL directories

SQL directories read and store their information in a SQL database. They are defined through the directories ex
tension point of the org.nuxeo.ecm.directory.sql.SQLDirectoryFactory component.

The directory element must contain a number of important sub-elements:

name: the name of the directory, used for overloading and in application code,

schema: the schema describing the columns in the directory,

dataSource: the JDBC datasource defining the database in which the data is stored,

table: the SQL table in which the data is stored,

idField: the primary key in the table, used for retrieving entries by id,

autoincrementldField: whether the idField is automatically incremented - this value is most of the time at
false, because the identifier is a string,

querySizeLimit: the maximum number of results that the queries on this directory should return; if there are
more results than this, an exception will be raised,

dataFile: file from which data is read to populate the table, depending on the following element,
createTablePolicy: indicates how the dataFile will be used to populate the table. Three values are allowed: n
ever if the dataFile is never used (the default), on_missing_columns if the dataFile is used to create
missing columns (when the table is created or each time a new column is added, due to a schema change), a
lways if the dataFile is used to create the table as each restart of the application server.

cacheTimeout: the timeout (in seconds) after which an entry is not kept in the cache anymore, the default is
0 which means never time out,

cacheMaxSize: the maximum number of entries in the cache, the default is 0 and means to not use entries
caching at all,

readOnly: if the directory should be read-only.

substringMatchType: how a non-exact match is done, possible values are subany, subinitial or subfi
nal; this is used in most Ul searches,

The following is used by the Ul if the directory is a hierarchical vocabulary:

parentDirectory: the parent directory to use.

The following are used only if the directory is used for authentication:

password: field from the table which contain the passwords,
passwordHashAlgorithm: the has algorithm to use to store new passwords, allowed values are SSHA and S
MD5, the default (nothing specified) is to store passwords in clear.

Example:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 182

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<?xml version="1.0"2?>
<component name="com.example.project.directories.sql">
<extension target="org.nuxeo.ecm.directory.sql.SQLDirectoryFactory"
point="directories">
<directory name="continent">
<schema>vocabulary</schema>
<dataSource>java:/nxsqldirectory</dataSource>
<cacheTimeout>3600</cacheTimeout>
<cacheMaxSize>1000</cacheMaxSize>
<table>continent</table>
<idField>id</idField>
<autoincrementIdField>false</autoincrementIdField>
<dataFile>directories/continent.csv</dataFile>
<createTablePolicy>on_missing columns</createTablePolicy>
</directory>
</extension>
</component>

LDAP directories

LDAP directories store information in a LDAP database. They are defined through the servers and directories
extension points of the org.nuxeo.ecm.directory.ldap.LDAPDirectoryFactory component.

First, one or more servers have to be defined. A server defines:

®* name: the name of the server which will be used in the declaration of the directories,

¢ IdapUrl: the address of the LDAP server, in 1dap:// or 1daps:// form; there can be several such tags to
leverage clustered LDAP configurations,

® bindDn: the Distinguished Name used to bind to the LDAP server,

* bindPassword: the corresponding password.

The bind credentials are used by Nuxeo EP to browse, create and modify all entries (irrespective of the actual
Nuxeo user these entries may represent).

Optional parameters are:

¢ connectionTimeout: the connection timeout (in milliseconds), the default is 10000 (10 seconds),
* poolingEnabled: whether to enable internal connection pooling (the default is true).

Example:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 183

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<?xml version="1.0"2?>
<component name="com.example.project.directories.ldap.srv">
<extension target="org.nuxeo.ecm.directory.ldap.LDAPDirectoryFactory"
point="servers">
<server name="default">
<ldapUrl>ldap://localhost:389</ldapUrl>
<bindDn>cn=nuxeo,ou=applications,dc=example,dc=com</bindDn>
<bindPassword>secret</bindPassword>
</server>
</extension>
</component>

Once you have declared the server, you can define new LDAP directories. The sub-elements of the directory elem
ent are:

name, schema, idField and passwordField: same as for SQL directories,
searchBaseDn: entry point into the server's LDAP tree structure; searches are only made below this root
node,
searchClass: restricts the type of entries to return as result,
searchFilter: additional LDAP filter to restrict the search results,
searchScope: the scope of the search. It can take two values: onelevel to search only under the current
node, or subtree to search in the whole subtree,
substringMatchType: defines who the query is built using wildcard characters. Three different values can be
provided:

® subany: wildcards are added around the string to match (as foo)

® subinitial: wildcard is added before the string (*bar)

® subfinal: wildcard is added after the string (baz*). This is the default behaviour.
readOnly: boolean value. This parameter allows to create new entries or modify existing ones in the LDAP
server
cacheTimeout: cache timeout in seconds
cacheMaxSize: maximum number of cached entries before global invalidation
creationBaseDn: entry point in the server's LDAP tree structure where new entries will be created. This is
useless to provided if readOnly attribute is set to false.
creationClass: use as many tag as needed to specify which class are used to defined new people entries in
LDAP server.

Example:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 184

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<?xml version="1.0"2?>
<component name="com.example.project.directories.ldap.dir">
<extension target="org.nuxeo.ecm.directory.ldap.LDAPDirectoryFactory"
point="directories">
<directory name="userDirectory">

<server>default</server>
<schema>user</schema>
<idField>username</idField>
<passwordField>password</passwordField>

<searchBaseDn>ou=people,dc=example,dc=com</searchBaseDn>
<searchClass>person</searchClass>

<searchFilter>(& (sn=foo*) (myCustomAttribute=somevalue))</searchFilte
r>
<searchScope>onelevel</searchScope>
<substringMatchType>subany</substringMatchType>

<readonly>false</readOnly>

<cacheTimeout>3600</cacheTimeout>
<cacheMaxSize>1000</cacheMaxSize>

<creationBaseDn>ou=people,dc=example,dc=com</creationBaseDn>
<creationClass>top</creationClass>
<creationClass>person</creationClass>
<creationClass>organizationalPerson</creationClass>
<creationClass>inetOrgPerson</creationClass>
</directory>
</extension>
</component>

Multi-directories

Multi directories are used to combine values coming from different directories. They are defined through the direct
ories extension point of the org.nuxeo.ecm.directory.multi.MultiDirectoryFactory component.

A multi-directory is made up of one or more sources. Each source aggregates one or more sub-directories.

A source defines:

®* name: the source name, for indentification purposes,
® creation: true when new entries should be created in this source (default is false),
® subDirectory: one or more sub-directories.

A subDirectory has:

®* name: the name of a valid directory, from which data will be read and written,

¢ optional: true if the sub-directory may have no info about a given entry without this being an error (default is
false),

* field: zero or more field mapping between the underlying sub-directory and the name it should have in the
multi-directory.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 185

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

A field element is of the form: <field for="foo">bar</field>. This means that the field foo of the underlying
directory will be turned into a field named bar in the multi-directory.

When an entry is requested from the multi-directory, each source will be consulted in turn. The first one that has an
answer will be used. In a source, the fields of a given entry will come from all the sub-directories, with appropriate
field name re-mapping. Each sub-directory has part of the entry, keyed by its main id (which may be remapped).

For the creation of new entries, only the sources marked for creation are considered.

Example:

<?xml version="1.0"2?>
<component name="com.example.project.directories.multi">
<extension
target="org.nuxeo.ecm.directory.multi.MultiDirectoryFactory"
point="directories">
<directory name="mymulti">
<schema>someschema</schema>
<idField>uid</idField>
<passwordField>password</passwordField>
<source name="sourceA" creation="true">
<subDirectory name="dirl">
<field for="thefoo">foo</field>
</subDirectory>
<subDirectory name="dir2">
<field for="uid">id</field>
<field for="thebar">bar</field>
</subDirectory>
</source>
<source name="sourceB">
</source>
</directory>
</extension>
</component>

References between directories

Directory references leverage two common ways of string relationship in LDAP directories.

Static reference as a dn-valued LDAP attribute

The static reference strategy is to apply when a multi-valued attribute stores the exhaustive list of distinguished
names of reference entries, for example the uniqueMember of the groupOfUniqueNames object.

<ldapReference field="members" directory="userDirectory"
staticAttributeId="uniqueMember" />

The staticAttributeld attribute contains directly the value which can be read and manipulated.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 186

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Dynamic reference as a IdapUrl-valued LDAP attribute

The dynamic attribute strategy is used when a potentially multi-value attribute stores a LDAP URL intensively, for
example the memberURL's attribute of the groupOfURL object class.

<ldapReference field="members" directory="userDirectory"
forceDnConsistencyCheck="false"
dynamicAttributeId="memberURL" />

The value contained in dynamicAttributeld looks like 1dap:///ou=groups,dc=example,dc=com? ?subtree? (
cn=sub*) and will be resolved by dynamical queries to get all values. The forceDnConsistencyCheck attribute will
check that the value got through the dynamic resolution correspond to the attended format. otherwise, the value will
be ignored. Use this check when you are not sure of the validity of the distinguished name

LDAP tree reference

The LDAP tree reference can be used to resolve children in the LDAP tree hierarchy.

<ldapTreeReference field="children" directory="groupDirectory"
scope="subtree" />

The field has to be a list of strings. It will resolve children of entries in the current directory, and look them up in the
directory specified in the reference.The scope attribute. Available scopes are "onelevel" (default), "subtree". Children
with same id than parent will be filtered. An inverse reference can be used to retrieve the parent form the children
entries. It will be stored in a list, even if there can be only 0 or 1 parent.

WARNING: Edit is NOT IMPLEMENTED: modifications to this field will be ignored when saving the entry.

Defining inverse references

Inverse references are defined with the following declarations:

<references>
<inverseReference field="groups" directory="groupDirectory"
dualReferenceField="members" />
</references>

This syntax should be understood as "the member groups value is an inverse reference on groupDirectory directory
using members reference". It is the group directory that stores all members for a given group. So the groups of a
member are retrieved by querying in which groups a member belongs to.

References defined by a many-to-many SQL table

TODO OG

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 187

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Adding custom LDAP fields to the Ul

To add a custom LDAP fields to the User interface you have to:

1. create a custom schema based on nuxeo's user.xsd schema with custom fields related to the fields in your
LDAP system
schemas/myuser.xsd:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:nxs="http://www.nuxeo.org/ecm/schemas/myuser"
targetNamespace="http://www.nuxeo.org/ecm/schemas/myuser ">

<xs:include schemaLocation="base.xsd" />

<xs:element name="username" type="xs:string" />
<xs:element name="password" type="xs:string" />
<xs:element name="email" type="xs:string" />
<xs:element name="firstName" type="xs:string" />
<xs:element name="lastName" type="xs:string" />
<xs:element name="company" type="xs:string" />
<!-- your custom telephone field -->

<xs:element name="telephone" type="xs:string" />

<xs:element name="groups" type="nxs:stringList" />

</xs:schema>

2. Add your schema via Nuxeo's extension system:
OSGI-INF/schema-contrib.xml

<?xml version="1.0"?>
<component name="com.example.myproject.myuser.schema">
<extension target="org.nuxeo.ecm.core.schema.TypeService"
point="schema">
<schema name="myuser" src="schemas/myuser.xsd" />
</extension>
</component>

3. modify your LDAP configuration file in Nuxeo (default-ldap-users-directory-bundle.xml) to include
a. your custom schema
default-ldap-users-directory-bundle.xmi:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 188

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<extension
target="org.nuxeo.ecm.directory.ldap.LDAPDirectoryFactory"
point="directories">

<directory name="userDirectory">
<server>default</server>
<!-- association between your custom schema and the
directory -->
<schema>myuser</schema>

b. mapping between your schema and your LDAP fields
default-ldap-users-directory-bundle.xml (continued):

<fieldMapping name="username">uid</fieldMapping>
<fieldMapping
name="password">userPassword</fieldMapping>
<fieldMapping name="firstName">givenName</fieldMapping>
<fieldMapping name="lastName">sn</fieldMapping>
<fieldMapping name="company ">o</fieldMapping>
<fieldMapping name="email">mail</fieldMapping>
<fieldMapping
name="telephone">telephoneNumber</fieldMapping>

4. modify the Ul
a. add your custom widget to the layout
default-ldap-users-directory-bundle.xml(continued):

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

189

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<extension
target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
point="layouts">

<layout name="user">
<templates>
<template
mode="any">/layouts/layout default template.xhtml</template>
</templates>
<rows>
<row>
<widget>username</widget>
</row>
<row>
<!-- your custom telephone widget-->
<widget>telephone</widget>
</row>

b. define a new widget for your custom field to be used in the layout above
default-ldap-users-directory-bundle.xml(continued):

<widget name="telephone" type="text">
<labels>

<label mode="any">telephone</label>
</labels>

<translated>true</translated>

<fields>

<field schema="myuser">telephone</field>
</fields>

<widgetModes>

<mode value="editPassword">hidden</mode>
</widgetModes>

<properties widgetMode="edit">

<property name="required">true</property>
<property name="styleClass">dataInputText</property>
</properties>

</widget>

Authentication
Nuxeo Authentication is based on the JAAS standard. Authentication infrastructure is based on two main
components:

® a JAAS Login Module: NuxeoLoginModule
® a Web Filter: NuxeoAuthenticationFilter.

Users and groups are managed via the UserManagerService that handles the indirection to users and groups
directories (SQL or LDAP or else).

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 190

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Nuxeo authentication framework is pluggable so that you can contribute new plugin and don't have to rewrite and
reconfigure a complete JAAS infrastructure.

Pluggable JAAS Login Module

NuxeoLoginModule is a JAAS Login Module. It is responsible for handling all login calls within Nuxeo's security
domains:

® nuxeo-ecm: for the service stack and the core,
® nuxeo-ecm-web: for the web application on the top of the service stack.

On JBoss application server, the JBoss Client Login module is used to propagate security between the web part and
the service stack.

NuxeoLoginModule

NuxeoLoginModule mainly handles two tasks:

On this page

Pluggable JAAS Login Module
Nuxeol oginModule
NuxeologinModule Plugins
Pluggable Web Authentication Filter
® NuxeoAuthenticationFilter
® Built-in Authentication Plugins
® Additional Authentication Plugins
® (CAS2 Authentication
* PROXY_AUTH: Proxy based Authentication
NTLM_AUTH: NTLM and IE challenge/response authentication
PORTAL_AUTH: SSO implementation for portal clients
ANONYMOUS_AUTH: Anonymous authentication plugin

® |ogin user
This means extracting information from the CallBack stack and validating identity.
NuxeoLoginModule supports several types of CallBacks (including Nuxeo specific CallBack) and uses a
plugin system to be able to validate user identity in a pluggable way.

® Principal creation
For that, NuxeoLoginModule uses Nuxeo UserManager service that does the indirection to the

users/groups directories.

When used in conjunction with UserIdentificationInfoCallback (Nuxeo custom CallBack system), the Logi
nModule will choose the right LoginPlugin according to the CallBack information.

NuxeolLoginModule Plugins

Because validating user identity can be more complex that just checking login/password, NuxeoLoginModule expo
ses an extension point to contribute new LoginPlugins.
Each LoginPlugin has to implement the org.nuxeo.ecm.platform.login.LoginPlugin interface.

This interface exposes the User Identity validation logic from the UserIdentificationInfo object populated by
the Authenticator (see the #Pluggable Web Authentication Filter section):

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 191

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

String validatedUserlIdentity(UserIdentificationInfo userIdent)

For instance, the default implementation will extract Login/Password from UserIdentificationInfo and call the
checkUsernamePassword against the UserManager that will validate this information against the users directory.

Other plugins can use other informations carried by UserldentificationInfo (token, ticket, ...) to validate the identity
against an external SSO system. The UserIdentificationInfo also carries the LoginModule plugin hame
that must be used to validate identity. Even if technically, a lot of SSO systems could be implemented using this
plugin system, most SSO implementations have been moved to the Authentication Plugin at the Web Filter level,
because they need a HTTP dialog.

For now, the NuxeoLoginModule has only two ways to handle validateUserIdentity:

¢ default that uses UserManager to validate the couple login/password,
® Trusted_LM: this plugin assumes the user identity has already been validated by the authentication filter, so v
alidatedUserIdentity will always return true.

Using Trusted_LM, a user will be logged if the user exists in the UserManager. This plugin is used for most SSO
systems in conjunction with an Authentication plugin that will actually do the work of validating password or token.

Pluggable Web Authentication Filter

The Web Authentication filter is responsible for:

® guarding access to web resources. The filter can be parameterized to guard URLs with a given pattern;

¢ finding the right plugin to get user identification information. This can be getting a userName/Password,
getting a token in a cookie or a header, redirecting user to another authentication server;

® creating the LoginContext. This means creating the needed callBacks and call the JAAS Login;

¢ storing and reestablishing login context. In order to avoid recreating a login context for each request, the Log
inContext is cached.

NuxeoAuthenticationFilter

The NuxeoAuthenticationFilter is one of the top level filters in Nuxeo Web Filters stack. For each request, it
will try to find a existing LoginContext and create a RequestWrapper that will carry the NuxeoPrincipal.

If no existing LoginContext is found, it will try to prompt the client for authentication information and will establish
the login context.

In order to execute the task of prompting the client and retrieving UserIndetificationInfo, the filter will rely on
a set of configured plugins.

Each plugin must:

® |Implement org.nuxeo.ecm.platform.ui.web.auth.interfaces.NuxeoAuthenticationPlugin.
The two main methods are:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 192

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Boolean handleLoginPrompt (HttpServletRequest httpRequest,HttpServletResponse
httpResponse, String baseURL);

UserIdentificationInfo handleRetrieveIdentity(HttpServletRequest httpRequest,
HttpServletResponse httpResponse);

¢ Define the LoginModule plugin to use if needed.
Typically, SSO AuthenticationPlugin will do all the work and will use the Trusted_LM LoginModule
Plugin.

* Define if stating URL must be saved.
AuthenticationPlugins, that uses HTTP redirect in order to do the login prompt, will let the Filter store
the first accessed URL in order to cleanly redirect the user to the page he asked after the authentication is
successful.
Additionally, AuthenticationPlugin can also implement the org.nuxeo.ecm.platform.ui.web.aut
h.interfaces.NuxeoAuthenticationPluginLogoutExtension interface if a specific processing
must be done when logging out.

Here is a sample XML descriptor for registering an AuthenticationPlugin:

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.ui.web.auth.defaultConfig">
<extension

target="org.nuxeo.ecm.platform.ui.web.auth.service.PluggableAuthenticationService"
point="authenticators">
<authenticationPlugin name="FORM_AUTH" enabled="true"
class="org.nuxeo.ecm.platform.ui.web.auth.plugins.FormAuthenticator">
<needStartingURLSaving>true</needStartingURLSaving>
<parameters>
<parameter name="LoginPage">login.jsp</parameter>
<parameter name="UsernameKey'">user_name</parameter>
<parameter name="PasswordKey'">user_password</parameter>
</parameters>
</authenticationPlugin>
</extension>
</component>

As you can see in the above example, the descriptor contains the parameters tag that can be used to embed
arbitrary additional configuration that will be specific to a given AuthenticationPlugin. In the above example, it
is used to define the field names and the JSP file used for form based authentication.

NuxeoAuthenticationFilter supports several authentication system. For example, this is useful to have users
using Form-based authentication and having RSS clients using Basic Authentication. Because of that, Authentica
tionPlugin must be ordered. For that purpose, NuxeoAuthenticationFilter uses a dedicated extension
point that lets you define the AuthenticationChain.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 193

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<component name="org.nuxeo.ecm.anonymous.activation">
<require>org.nuxeo.ecm.platform.ui.web.auth.WebEngineConfig</require>
<extension

target="org.nuxeo.ecm.platform.ui.web.auth.service.PluggableAuthenticationService"
point="chain">
<authenticationChain>
<plugins>
<plugin>BASIC_AUTH</plugin>
<plugin>ANONYMOUS_AUTH</plugin>
<plugin>FORM_AUTH</plugin>
</plugins>
</authenticationChain>
</extension>
</component>

The NuxeoAuthenticationFilter will use this chain to trigger the login prompt. When authentication is needed,
the Filter will first call the handleRetrieveIdentity method on all the plugins in the order of the authentication
chain. Then, if the authentication could not be achieved, the Filter will call the handleLoginPrompt method in the
same order on all the plugins. The aim is to have as much automatic authentications as possible. That's why all the
manual authentications (those needing a prompt) are done in a second round.

Some authentication plugins may choose to trigger or not the LoginPrompt depending on the situation. For
example: the BasicAuthentication plugin generates the login prompt (an HTTP basic authentication which
takes the form of a popup) only for specific URLs used by RSS feeds or restlet calls. This allows the platform to be
easily called by Restlets and RSS clients without bothering browser clients who are dispayed web forms to
authenticate.

Built-in Authentication Plugins

NuxeoAuthenticationFilter comes with two built-in authentication plugins:

® FORM_ AUTH: Form based Authentication
This is a standard form-based authentication. The current implementation lets you configure the name of the
Login and Password fields and the name of the page used to display the login page.

® BASIC_AUTH: Basic HTTP Authentication
This plugin supports standard HTTP Basic Authentication. By default, this plugin only generates the
authentication prompt on configured URLs.
There are also additional components that provide other Authentication plugins (see below).

Additional Authentication Plugins

Nuxeo provides a set of other authentication plugins that are not installed by default with the standard Nuxeo
Platform setup. These plugins can be downloaded and installed separately.

CAS2 Authentication

This plugin implements a client for CAS SSO system (Central Authentication System). It can be configured to use a
CAS proxy. It has been tested and reported to work with CAS V2.
It's easy to test this plugin by installing the JA-SIG Central Authentication Service Open Source CAS server.

To install the CAS2 authentication plugin:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 194

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

—

. Make sure there is a CAS server already setup and running.

2. Download the nuxeo-platform-login-cas2 plugin.

3. Putitin $STOMCAT HOME/nxserver/bundles or $JBOSS HOME/server/default/deploy/nuxeo.ear
/bundles and restart the server.

4. Configure the CAS2 descriptor.

5. Put CAS2 plugin into the authentication chain.

In order to configure CAS2 Auth, you need to create an XML configuration file into nxserver/config.
Here is a sample file named CAS2-config.xml.

<component name="org.nuxeo.ecm.platform.authenticator.cas2.sso.config">

<require>org.nuxeo.ecm.platform.ui.web.auth.WebEngineConfig</require>
<require>org.nuxeo.ecm.platform.login.Cas2SS0O</require>

<!-- Configure you CAS server parameters -->
<extension
target="org.nuxeo.ecm.platform.ui.web.auth.service.PluggableAuthenticationService"
point="authenticators">
<authenticationPlugin name="CAS2_AUTH">
<loginModulePlugin>Trusting LM</loginModulePlugin>
<parameters>
<parameter name="ticketKey">ticket</parameter>
<parameter
name="appURL">http://127.0.0.1:8080/nuxeo/nxstartup.faces</parameter>
<parameter
name="serviceLoginURL">http://127.0.0.1:8080/cas/login</parameter>
<parameter
name="serviceValidateURL">http://127.0.0.1:8080/cas/serviceValidate</parameter>
<parameter name="serviceKey'">service</parameter>
<parameter name="logoutURL">http://127.0.0.1:8080/cas/logout</parameter>
</parameters>
</authenticationPlugin>
</extension>

<!-- Include CAS2 into authentication chain -->
<extension
target="org.nuxeo.ecm.platform.ui.web.auth.service.PluggableAuthenticationService"
point="chain">
<authenticationChain>
<plugins>
<plugin>BASIC_AUTH</plugin>
<plugin>CAS2_AUTH</plugin>
</plugins>
</authenticationChain>
</extension>
</component>

If while authenticating on the CAS server, you get the following exception in the logs, it simply
means that the user JOEUSER does not exist in the Nuxeo directory and does not mean that the
CAS process is not working.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 195

http://doc.nuxeo.com/x/GATF
https://maven.nuxeo.org/nexus/index.html#nexus-search;quick~nuxeo-platform-login-cas2

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

ERROR \[org.nuxeo.ecm.platform.login.NuxeoLoginModule\] createldentity failed
javax.security.auth.login.LoginException: principal JOEUSER does not exist

at

org.nuxeo.ecm.platform.login.NuxeolLoginModule.createIdentity (NuxeoLoginModule.java:3

04)
at

org.nuxeo.ecm.platform.login.NuxeoLoginModule.validateUserIdentity (NuxeoLoginModule.
java:362)

at

org.nuxeo.ecm.platform.login.NuxeoLoginModule.getPrincipal (NuxeoLoginModule.java:216

)
at

org.nuxeo.ecm.platform.login.NuxeolLoginModule.login (NuxeoLoginModule.java:271)

at
at
at

sun.reflect.NativeMethodAccessorImpl.invokeO (Native Method)
sun.reflect.NativeMethodAccessorImpl. invoke (NativeMethodAccessorImpl.java:39)

sun.reflect.DelegatingMethodAccessorImpl. invoke (DelegatingMethodAccessorImpl.java:25

)
at

at
at
at
at
at
at
at

java.lang.reflect.Method.invoke (Method.java:585)
javax.security.auth.login.LoginContext.invoke (LoginContext.java:769)
javax.security.auth.login.LoginContext.access$000(LoginContext.java:186)
javax.security.auth.login.LoginContext$4.run(LoginContext.java:683)
java.security.AccessController.doPrivileged (Native Method)
javax.security.auth.login.LoginContext.invokePriv(LoginContext.java:680)
javax.security.auth.login.LoginContext.login(LoginContext.java:579)

org.nuxeo.ecm.platform.ui.web.auth.NuxeoAuthenticationFilter.doAuthenticate (NuxeoAut
henticationFilter.java:205)

PROXY_AUTH: Proxy based Authentication

This plugin assumes Nuxeo is behind a authenticating reverse proxy that transmit user identity using HTTP headers.
For instance, you will configure this plugin if an Apache reverse proxy using client certificates do the authentication
or for SSO system - example Central Authentication System V2.

To install this authentication plugin:

1. Download the nuxeo-platform-login-mod_sso plugin.

2. Putitin $TOMCAT HOME/nxserver/bundles/ or $JBOSS HOME/server/default/deploy/nuxeo.ea
r/bundles and restart the server.

3. Configure the plugin via an XML descriptor.

4. Put the plugin into the authentication chain.

In order to configure this plugin, you need to create an XML configuration file into nxserver/config.
Here is a sample file named proxy-auth-config.xml

Copyright © 2010-2013 Nuxeo.

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 196

http://doc.nuxeo.com/x/GATF
https://maven.nuxeo.org/nexus/index.html#nexus-search;quick~nuxeo-platform-login-mod_sso

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<component name="org.nuxeo.ecm.platform.authenticator.mod.sso.config">

<require>org.nuxeo.ecm.platform.ui.web.auth.WebEngineConfig</require>
<require>org.nuxeo.ecm.platform.login.Proxy</require>

<extension
target="org.nuxeo.ecm.platform.ui.web.auth.service.PluggableAuthenticationService"
point="authenticators">
<authenticationPlugin name="PROXY_AUTH">
<loginModulePlugin>Trusting LM</loginModulePlugin>
<parameters>
<\!-\- configure here the name of the http header that is used to retrieve
user identity -->
<parameter name="ssoHeaderName">remote_user</parameter>
</parameters>
</authenticationPlugin>
</extension>

<\!-\- Include Proxy Auth into authentication chain -->
<extension
target="org.nuxeo.ecm.platform.ui.web.auth.service.PluggableAuthenticationService"
point="chain">
<authenticationChain>
<plugins>
<\!-\- Keep basic Auth at top of Auth chain to support RSS access via
BasicAuth -->
<plugin>BASIC_AUTH</plugin>
<plugin>PROXY_AUTH</plugin>
</plugins>
</authenticationChain>
</extension>
</component>

NTLM_AUTH: NTLM and IE challenge/response authentication
This plugin uses JCIFS to handle NTLM authentication.

© This plugin was partially contributed by Nuxeo Platform users and has been reported to work by
several users.

If you have troubles with latest version of IE on POST requests, please see JCIFS instructions on that:

http://jcifs.samba.org/src/docs/ntlmhttpauth.html#post

To install this authentication plugin:

1. Download the nuxeo-platform-login-ntlm plugin.

2. Putitin $STOMCAT HOME/nxserver/bundles or $JBOSS HOME/server/default/deploy/nuxeo.ear
/bundles and restart the server.

Configure the plugin via an XML descriptor.

4. Put the plugin into the authentication chain.

w

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 197

http://doc.nuxeo.com/x/GATF
https://maven.nuxeo.org/nexus/index.html#nexus-search;quick~nuxeo-platform-login-ntlm

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

In order to configure this plugin, you need to create an XML configuration file into nxserver/config.
Here is a sample file named nt1lm-auth-config.xml.

<component name="org.nuxeo.ecm.platform.authenticator.ntlm.config">

<require>org.nuxeo.ecm.platform.ui.web.auth.WebEngineConfig</require>
<require>org.nuxeo.ecm.platform.login.NTLM</require>

<extension
target="org.nuxeo.ecm.platform.ui.web.auth.service.PluggableAuthenticationService"

point="authenticators">
<authenticationPlugin name="NTLM_AUTH">
<loginModulePlugin>Trusting_ LM</loginModulePlugin>
<parameters>
<\!-\- Add here parameters for you domain, please ee
[http://jcifs.samba.org/src/docs/ntlmhttpauth.html];
<parameter name="jcifs.http.domainController">MyControler</parameter>
\——>
</parameters>
</authenticationPlugin>
</extension>

<\!-\- Include NTLM Auth into authentication chain -->

<extension
target="org.nuxeo.ecm.platform.ui.web.auth.service.PluggableAuthenticationService"
point="chain">
<authenticationChain>
<plugins>
<plugin>BASIC_AUTH</plugin>
<plugin>NTLM_AUTH</plugin>
<plugin>FORM_AUTH</plugin>
</plugins>
</authenticationChain>
</extension>
</component>

PORTAL_AUTH: SSO implementation for portal clients

This plugin provides a way to handle identity propagation between an external application and Nuxeo. It was coded
in order to propagate user identify between a JSSR168 portal and a Nuxeo server. See the Nuxeo-Hitp-client-library
for more information.

To install this authentication plugin:

1. Download the nuxeo-platform-login-portal-sso plugin.
2. Putitin $TOMCAT HOME/nxserver/bundles or $JBOSS HOME/server/default/deploy/nuxeo.ear

/bundles and restart the server.

3. Configure the plugin via an XML descriptor.
4. Put the plugin into the authentication chain.

In order to configure this plugin, you need to create an XML configuration file into nxserver/config.
Here is a sample file named portal-auth-config.xml.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 198

http://doc.nuxeo.com/x/GATF
https://maven.nuxeo.org/nexus/index.html#nexus-search;quick~nuxeo-platform-login-portal-sso

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<component name="org.nuxeo.ecm.platform.authenticator.portal.sso.config">

<require>org.nuxeo.ecm.platform.ui.web.auth.WebEngineConfig</require>
<require>org.nuxeo.ecm.platform.login.Portal</require>

<extension
target="org.nuxeo.ecm.platform.ui.web.auth.service.PluggableAuthenticationService"

point="authenticators">
<authenticationPlugin name="PORTAL AUTH">
<loginModulePlugin>Trusting LM</loginModulePlugin>

<parameters>
<\!-\- define here shared secret between the portal and Nuxeo server -->

<parameter name="secret'">nuxeo5secretkey</parameter>
<parameter name="maxAge">3600</parameter>
</parameters>
</authenticationPlugin>
</extension>

<\!-\- Include Portal Auth into authentication chain -->

<extension
target="org.nuxeo.ecm.platform.ui.web.auth.service.PluggableAuthenticationService'
point="chain">
<authenticationChain>
<plugins>
<\1-\-

BasicAuth -->
<plugin>BASIC_AUTH</plugin>

<plugin>PORTAL_AUTH</plugin>
<plugin>FORM_AUTH</plugin>
</plugins>
</authenticationChain>
</extension>
</component>

Keep basic Auth at top of Auth chain to support RSS access via

ANONYMOUS_AUTH: Anonymous authentication plugin

This plugin provides anonymous authentication. Users are automatically logged as a configurable Anonymous user.
This module also includes additional actions (to be able to login when already logged as Anonymous) and a
dedicated Exception handling (to automatically redirect Anonymous users to login screen after a security error).

To activate this authentication plugin:

1. Putitin STOMCAT HOME/nxserver/bundles or $JBOSS_ HOME/server/default/deploy/nuxeo.ear

/bundles and restart the server.
2. Configure the plugin via an XML descriptor (define who the anonymous user will be).
In order to configure this plugin, you need to create an XML configuration file into nxserver/config.

Here is a sample file named anonymous-auth-config.xml.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 199

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.login.anonymous.config">

<!-- Add an Anonymous user -->
<extension target="org.nuxeo.ecm.platform.usermanager.UserService"
point="userManager">
<userManager>
<users>
<anonymousUser id="Guest">
<property name="firstName">Guest</property>
<property name="lastName">User</property>
</anonymousUser>
</users>
</userManager>
</extension>

</component>

Related pages

Using OAuth (Nuxeo Installation and Administration)
Configure User & Group storage and Authentication (Nuxeo Installation and Administration)

Configure User & Group storage and Authentication (Nuxeo Installation and Administration - 5.6)

Using CAS2 authentication (Nuxeo Installation and Administration - 5.6)

Configuring a reverse proxy to work with Live Edit and client certificate authentication (Nuxeo Installation and
Administration - 5.6)

Using CAS2 authentication (Nuxeo Installation and Administration)

Configure User & Group storage and Authentication (Nuxeo Installation and Administration - 5.5)

Authentication, users and groups (Nuxeo Installation and Administration - 5.5)

Using OAuth (Nuxeo Installation and Administration - 5.5)

Using CAS2 authentication (Nuxeo Installation and Administration - 5.5)

Using Shibboleth (Nuxeo Installation and Administration - 5.5)

Using a LDAP directory (Nuxeo Installation and Administration - 5.5)

Authentication, users and groups (Nuxeo Installation and Administration - 5.6)

Using a LDAP directory (Nuxeo Installation and Administration - 5.6)

Configuring a reverse proxy to work with Live Edit and client certificate authentication (Nuxeo Installation and
Administration)

Showing first 15 of 20 results

User Management

In Nuxeo Platform, the concept of a user is needed for two main reasons:
® users are needed for authentication and authorization to work,

® users have associated information that can be displayed, for instance to display someone's full name or email
address.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 200

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/ADMINDOC/Using+OAuth
http://doc.nuxeo.com/pages/viewpage.action?pageId=9830808
http://doc.nuxeo.com/pages/viewpage.action?pageId=11044277
http://doc.nuxeo.com/display/ADMINDOC56/Using+CAS2+authentication
http://doc.nuxeo.com/display/ADMINDOC56/Configuring+a+reverse+proxy+to+work+with+Live+Edit+and+client+certificate+authentication
http://doc.nuxeo.com/display/ADMINDOC/Using+CAS2+authentication
http://doc.nuxeo.com/pages/viewpage.action?pageId=10387964
http://doc.nuxeo.com/display/ADMINDOC55/Authentication%2C+users+and+groups
http://doc.nuxeo.com/display/ADMINDOC55/Using+OAuth
http://doc.nuxeo.com/display/ADMINDOC55/Using+CAS2+authentication
http://doc.nuxeo.com/display/ADMINDOC55/Using+Shibboleth
http://doc.nuxeo.com/display/ADMINDOC55/Using+a+LDAP+directory
http://doc.nuxeo.com/display/ADMINDOC56/Authentication%2C+users+and+groups
http://doc.nuxeo.com/display/ADMINDOC56/Using+a+LDAP+directory
http://doc.nuxeo.com/display/ADMINDOC/Configuring+a+reverse+proxy+to+work+with+Live+Edit+and+client+certificate+authentication

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

An abstraction, the UserManager, centralizes the way a Nuxeo Platform application deals with users (and groups
of users). The UserManager is queried by the platform's LoginModule when someone attempts to authenticate
against the framework. It is also queried whenever someone wants the last name or email of a user for instance, or
to get all users having "Bob" as their first name.

On this page

® Users and Groups configuration
®* Example of User Manager configuration
® Schema definition
® User Manager definition
® Directory definition
® SQL case
®* | DAP case
® Multi-directories

® UserManager
® Simple case
® Configuring the User Manager with anonymous user and other virtual users

® User and Group display
® User Layout definition

Users and Groups configuration

The data about users (login, password, name, personal information, etc.) and the groups they belong to (simple
members, or any application-related group) are managed through the Directory abstraction.
This means that:

LDAP can store users and groups,

SQL can store users and groups,

LDAP can store user and SQL can store groups,

Nuxeo can aggregate two LDAP servers for user storage and SQL can store groups,

a part of user can be stored into an LDAP server and into SQL, and SQL can store groups,

You understood almost of any configuration is possible... The application doesn't see the difference as long as the
connectors are configured properly.

To configure your user management, you basically need to follow these steps:

1.

2.

define the schema that describes fields stored into a user. This is exactly the same extension point you will
use for document type;
define a user manager. The default one will manage user stored into a directory. But you can implement your
specific user manager, if you need;
If you use the default user manager:
a. directory definition: As you describe a vocabulary, you will describe the user directory. Instead of using
the vocabulary schema, you will use one that defines a username, a first name, ...
b. configure the Default User Manager to bind it to the directory described above and some search
configuration.

. define how to display the User Profile. Most of the time you do not have to do that.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 201

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

If you want to declare fields that are not stored into your directory, but that must be locally stored
in Nuxeo, this is possible.
Nuxeo Platform defines a User Profile Service that will manage these type of field. These fields
will be stored into a hidden Nuxeo Document into the personal workspace of each user.
You will benefit from all the Ul infrastructure for these specific fields (Layout Service, Widget
Service, ...).

Example of User Manager configuration

Schema definition
Here, will be defined a typical example of configuration.

Nuxeo Platform defines a default schema. Most of the time, this schema works for our users:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema”
xmlns:nxs="http://www.nuxeo.org/ecm/schemas/user"
targetNamespace="http://www.nuxeo.org/ecm/schemas/user">

<xs:include schemalocation="base.xsd" />
<xs:element name="username" type="xs:string" />
<xs:element name="password" type="xs:string" />
<xs:element name="email" type="xs:string" />
<xs:element name="firstName" type="xs:string" />
<xs:element name="lastName" type="xs:string" />
<xs:element name="company" type="xs:string" />

<xs:element name="petName" type="xs:string" />

<!-- inverse reference -->
<xs:element name="groups" type="nxs:stringList" />

</xs:schema>

This schema is registered in an extension point:

<extension target="org.nuxeo.ecm.core.schema.TypeService" point="schema">
<schema name="myuser" src="myuser.xsd" />
</extension>

You can choose to define your own schema by adding some field ore remove ones, if you need.

The schema for groups works the same way:

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

202

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<?xml version="1.0"?>
<xs:schema targetNamespace="http://www.nuxeo.org/ecm/schemas/group"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:nxs="http://www.nuxeo.org/ecm/schemas/group">
<xs:include schemalocation="base.xsd" />
<xs:element name="groupname" type="xs:string" />
<xs:element name="grouplabel" type="xs:string" />
<xs:element name="description" type="xs:string" />
<!-- references -->
<xs:element name="members" type="nxs:stringList" />

<xs:element name="subGroups" type="nxs:stringList" />

<!-- inverse reference -->
<xs:element name="parentGroups" type="nxs:stringList" />

</xs:schema>

...

<extension target="org.nuxeo.ecm.core.schema.TypeService" point="schema">
<schema name="group" src="directoryschema/group.xsd"/>
</extension>

If you want to override these schema, don't forget the require item in your contribution and the
override parameter in your schema definition (see the schema documentation warn).

User Manager definition

You can override the Nuxeo default User Manager. You can look the UserManager definition into
explorer.nuxeo.com. But most of the time the default User Manager binded to a directory is enough for our users.

Directory definition
SQL case

So the user and group schema can now be used when we define a new directory, called "MyUserDirectory".

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 203

http://doc.nuxeo.com/x/GATF
http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewService/org.nuxeo.ecm.platform.usermanager.UserManager
http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewService/org.nuxeo.ecm.platform.usermanager.UserManager

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

SQL directory sample definition

<extension target="org.nuxeo.ecm.directory.sql.SQLDirectoryFactory"
point="directories">
<directory name="MyUserDirectory">

<schema>myuser</schema>
<idField>username</idField>
<passwordField>password</passwordField>

<dataSource>java:/nxsqldirectory</dataSource>
<table>myusers</table>

<dataFile>myusers.csv</dataFile>
<createTablePolicy>on_missing_columns</createTablePolicy>

<references>
<inverseReference field="groups" directory="groupDirectory"
dualReferenceField="members" />
</references>

</directory>
</extension>

And we can provide a file, "myusers.csv", which will be used to populate the table if it is missing:

username, password, firstName, lastName, company, email, petName
bob,bobSecret,Bob,Doe,ACME, bob@example.com,Lassie
If instead we had used an LDAP directory, the configuration would look like:

LDAP case
In the case of your server is a LDAP server, here is an example of directory definition.

First, define the LDAP Server that will be used as reference into the LDAP directory definition.

LDAP server sample definition

<extension target="org.nuxeo.ecm.directory.ldap.LDAPDirectoryFactory"
point="servers">
<server name="default">
<ldapUrl>ldap://localhost:389</1ldapUrl>
<bindDn>cn=manager,dc=example,dc=com</bindDn>
<bindPassword>secret</bindPassword>
</server>
</extension>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

204

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

LDAP directory sample definition

<extension target="org.nuxeo.ecm.directory.ldap.LDAPDirectoryFactory"
point="directories">
<directory name="MyUserDirectory">

<schema>myuser</schema>
<idField>username</idField>
<passwordField>password</passwordField>

<server>default</server>
<searchBaseDn>ou=people,dc=example, dc=com</searchBaseDn>
<searchClass>inetOrgPerson</searchClass>
<searchScope>subtree</searchScope>

<fieldMapping name="username">uid</fieldMapping>
<fieldMapping name="password">userPassword</fieldMapping>
<fieldMapping name="email">mail</fieldMapping>
<fieldMapping name="firstName">givenName</fieldMapping>
<fieldMapping name="lastName">sn</fieldMapping>
<fieldMapping name="company">o</fieldMapping>

<references>
<inverseReference field="groups" directory="groupDirectory"
dualReferenceField="members" />

</references>

</directory>
</extension>

Multi-directories

If you need to mix multiple directories, see the MultiDirectoryFactory.

Multi-directories sample definition

<extension point="directories"
target="org.nuxeo.ecm.directory.multi.MultiDirectoryFactory">
<directory name="userDirectory">
<schema>user</schema>
<idField>username</idField>
<passwordField>password</passwordField>
<source name="userLDAPSource">
<subDirectory name="userLDAPDirectory"/>
<optional>true</optional>
</source>
<source creation="true" name="userSQLSource">
<subDirectory name="userSQLDirectory"/>
</source>
</directory>
</extension>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

http://doc.nuxeo.com/x/GATF
http://explorer.nuxeo.org/nuxeo/site/distribution/current/viewExtensionPoint/org.nuxeo.ecm.directory.multi.MultiDirectoryFactory--directories

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

UserManager

Simple case

We can now tell the UserManager that this directory should be the one to use when dealing with users:

<extension target="org.nuxeo.ecm.platform.usermanager.UserService"
point="userManager">
<userManager>
<users>
<directory>MyUserDirectory</directory>
<emailField>email</emailField>
<searchFields append="true">
<searchField>username</searchField>
<searchField>firstName</searchField>
<searchField>lastName</searchField>
<searchField>myfield</searchField>
</searchFields>
</users>
</userManager>
</extension>

This configuration also sets the email field and search fields that have to be queried when searching for users. It can
be completed to set the anonymous user, add virtual users, or set the group directory properties.

Configuring the User Manager with anonymous user and other virtual users

Virtual users can be added for authentication. Properties are used to create the appropriate model as if user was
retrieved from the user directory. This is a convenient way to add custom users to the application when the user
directory (using LDAP for instance) cannot be modified. Virtual users with the "administrators" group will have the
same rights as the default administrator.

The anonymous user represents a special kind of virtual user, used to represent users that do not need to log in the
application. This feature is used in conjunction with the anonymous plugin.

<extension target="org.nuxeo.ecm.platform.usermanager.UserService"
point="userManager">
<userManager>
<users>
<directory>MyUserDirectory</directory>
<emailField>email</emailField>
<searchFields append="true">
<searchField>username</searchField>
<searchField>firstName</searchField>
<searchField>lastName</searchField>
<searchField>myfield</searchField>
</searchFields>
<listingMode>tabbed</listingMode>

<anonymousUser id="Anonymous">
<property name="firstName">Anonymous</property>
<property name="lastName">User</property>
</anonymousUser>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 206

http://doc.nuxeo.com/x/GATF

nuxeo

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<virtualUser id="MyCustomAdministrator" searchable="false">
<password>secret</password>
<property name="firstName">My Custom</property>
<property name="lastName">Administrator</property>
<group>administrators</group>
</virtualUser>
<virtualUser id="MyCustomMember" searchable="false">
<password>secret</password>
<property name="firstName">My Custom</property>
<property name="lastName">Member</property>
<group>members</group>
<group>othergroup</group>
<propertyList name="listprop">
<value>iteml</value>
<value>item2</value>
</propertyList>
</virtualUser>
<virtualUser id="ExistingVirtualUser" remove="true" />

</users>

<defaultAdministratorId>Administrator</defaultAdministratorId>

<!-- available tags since 5.3.1 -->
<administratorsGroup>myAdmins</administratorsGroup>
<administratorsGroup>myOtherAdmins</administratorsGroup>
<disableDefaultAdministratorsGroup>

false
</disableDefaultAdministratorsGroup>
<!-- end of available tags since 5.3.1 -->

<userSortField>lastName</userSortField>
<userPasswordPattern>"[a-2A-Z0-9] {5, }$</userPasswordPattern>

<groups>
<directory>somegroupdir</directory>
<membersField>members</membersField>
<subGroupsField>subgroups</subGroupsField>
<parentGroupsField>parentgroup</parentGroupsField>
<listingMode>search_only</listingMode>

</groups>

<defaultGroup>members</defaultGroup>

<groupSortField>groupname</groupSortField>

Copyright © 2010-2013 Nuxeo.

207

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

</userManager>
</extension>

The default administrator ID can be set either to an existing or virtual user. This user will be virtually member of all
the groups declared as administrators (by default, the group named "administrators" is used).

New administrators groups can be added using the "administratorsGroup" tag. Several groups can be defined,
adding as many tags as needed. The default group named "administrators" can be disabled by setting the disable
DefaultAdministratorsGroup to "true" (default is to false): only new defined administrators groups will then be
taken into account.

Disabling the default "administrators" group should be done after setting up custom rights in the
repository, as this group is usually defined as the group of users who have all permissions at the
root of the repository. Administrators groups will have access to vocabulary management, theme
editor,... They are also added local rights when blocking permissions to avoid lockups.

The group directory can also be configured to define the groups hierarchy and the contained users. This
configuration has to match the user directory inverse references.

Every authenticated user will be placed in the configured default group. This group does not need to exist in the
backing group directory, nor does any other group listed in virtual users configuration.

User and Group display

The default users and groups management pages use some layouts for display. If you're using custom schema and
would like to display your new fields, or would like to change the default display, you can redefine the layouts named
"user" and "group" by contributing new layouts with these names.

Do not forget to put <require>org.nuxeo.ecm.platform.forms.layouts.webapp</require> on your
layout contribution to ensure default layouts are overridden.

User Layout definition

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.forms.layouts.usersAndGroups">
<extension target="org.nuxeo.ecm.platform.forms.layout.WebLayoutManager"
point="layouts">
<layout name="user">
<templates>
<template mode="any">/layouts/layout_default_template.xhtml</template>
</templates>
<rows>
<row>
<widget>username</widget>
</row>
<row>
<widget>firstname</widget>
</row>
<row>
<widget>lastname</widget>
</row>
<row>
<widget>company</widget>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 208

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

</row>
<row>
<widget>email</widget>
</row>
<row>
<widget>firstPassword</widget>
</row>
<row>
<widget>secondPassword</widget>
</row>
<row>
<widget>passwordMatcher</widget>
</row>
<row>
<widget>groups</widget>
</row>
</rows>
<widget name="username" type="text">
<labels>
<label mode="any">username</label>
</labels>
<translated>true</translated>
<fields>
<field schema="user">username</field>
</fields>
<widgetModes>
<mode value="create">edit</mode>
<mode value="editPassword">hidden</mode>
<mode value="any">view</mode>
</widgetModes>
<properties widgetMode="edit">
<property name="required">true</property>
<property name="styleClass">dataInputText</property>
<property name="validator">
#{userManagerActions.validateUserName}
</property>
</properties>
</widget>
<widget name="firstname" type="text">
<labels>
<label mode="any">firstName</label>
</labels>
<translated>true</translated>
<fields>
<field schema="user">firstName</field>
</fields>
<widgetModes>
<mode value="editPassword">hidden</mode>
</widgetModes>
<properties widgetMode="edit">
<property name="styleClass">dataInputText</property>

</properties>

</widget>

<widget name="lastname" type="text">
<labels>

<label mode="any">lastName</label>

</labels>
<translated>true</translated>
<fields>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

http://doc.nuxeo.com/x/GATF

nuxeo

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<field schema="user">lastName</field>
</fields>
<widgetModes>
<mode value="editPassword">hidden</mode>
</widgetModes>
<properties widgetMode="edit">
<property name="styleClass">dataInputText</property>
</properties>
</widget>
<widget name="company" type="text">
<labels>
<label mode="any">company</label>
</labels>
<translated>true</translated>
<fields>
<field schema="user">company</field>
</fields>
<widgetModes>
<mode value="editPassword">hidden</mode>
</widgetModes>
<properties widgetMode="edit">
<property name="styleClass">dataInputText</property>
</properties>
</widget>
<widget name="email" type="text">
<labels>
<label mode="any">email</label>
</labels>
<translated>true</translated>
<fields>
<field schema="user">email</field>
</fields>
<widgetModes>
<mode value="editPassword">hidden</mode>
</widgetModes>
<properties widgetMode="edit">
<property name="required">true</property>
<property name="styleClass">dataInputText</property>
</properties>
</widget>
<widget name="firstPassword" type="secret">
<labels>
<label mode="any">password</label>
</labels>
<translated>true</translated>
<fields>
<field schema="user">password</field>
</fields>
<widgetModes>
<mode value="create">edit</mode>
<mode value="editPassword">edit</mode>
<mode value="any">hidden</mode>
</widgetModes>
<properties widgetMode="edit">
<property name="required">true</property>
<property name="styleClass">dataInputText</property>
</properties>
</widget>
<widget name="secondPassword" type="secret">

Copyright © 2010-2013 Nuxeo.

210

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

<labels>

<label mode="any">password.verify</label>
</labels>
<translated>true</translated>
<widgetModes>

<mode value="create">edit</mode>
<mode value="editPassword">edit</mode>
<mode value="any">hidden</mode>
</widgetModes>
<properties widgetMode="edit">
<property name="required">true</property>
<property name="styleClass">dataInputText</property>
</properties>
</widget>
<widget name="passwordMatcher" type="template">
<labels>
<label mode="any"></label>
</labels>
<translated>true</translated>
<widgetModes>
<mode value="create">edit</mode>
<mode value="editPassword">edit</mode>
<mode value="any">hidden</mode>

</widgetModes>
<properties widgetMode="edit">
<!-- XXX: depends on firstPassword and secondPassword widget names -->

<property name="template">
/widgets/user_password_validation_widget_template.xhtml
</property>
</properties>
</widget>
<widget name="groups" type="template">
<labels>
<label mode="any">label.userManager.userGroups</label>
</labels>
<translated>true</translated>
<fields>
<field schema="user">groups</field>
</fields>
<widgetModes>
<mode value="edit">
\#{nxu:test (currentUser.administrator, 'edit', 'view')}
</mode>
<mode value="editPassword">hidden</mode>
</widgetModes>
<properties widgetMode="any">
<property name="template">
/widgets/user_suggestion_widget_template.xhtml
</property>
<property name="userSuggestionSearchType">GROUP_TYPE</property>
</properties>
</widget>
</layout>
<layout name="group">
<templates>
<template mode="any">/layouts/layout_default_template.xhtml</template>
</templates>
<rows>
<row>

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

http://doc.nuxeo.com/x/GATF

nuxeo

This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page.

Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)
<widget>groupname</widget>
</row>
<row>
<widget>members</widget>
</row>
<row>
<widget>subgroups</widget>
</row>
</rows>
<widget name="groupname" type="text">
<labels>
<label mode="any">label.groupManager.groupName</label>
</labels>
<translated>true</translated>
<fields>
<field schema="group">groupname</field>
</fields>
<widgetModes>
<mode value="create">edit</mode>
<mode value="any">hidden</mode>
</widgetModes>
<properties widgetMode="any">
<property name="required">true</property>
<property name="styleClass">dataInputText</property>
</properties>
</widget>
<widget name="members" type="template">
<labels>
<label mode="any">label.groupManager.userMembers</label>
</labels>
<translated>true</translated>
<fields>
<field schema="group">members</field>
</fields>
<properties widgetMode="any">
<property name="template">
/widgets/user_suggestion_widget_template.xhtml
</property>
<property name="userSuggestionSearchType">USER_TYPE</property>
</properties>
</widget>
<widget name="subgroups" type="template">
<labels>
<label mode="any">label.groupManager.groupMembers</label>
</labels>
<translated>true</translated>
<fields>
<field schema="group">subGroups</field>
</fields>
<properties widgetMode="any">
<property name="template">
/widgets/user_suggestion_widget_template.xhtml
</property>
<property name="userSuggestionSearchType">GROUP_TYPE</property>
</properties>
</widget>
</layout>

Copyright © 2010-2013 Nuxeo.

212

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

</extension>
</component>

Related pages

Using OAuth (Nuxeo Installation and Administration)

Configure User & Group storage and Authentication (Nuxeo Installation and Administration)

Using CAS2 authentication (Nuxeo Installation and Administration)

Configuring a reverse proxy to work with Live Edit and client certificate authentication (Nuxeo Installation and
Administration)

Authentication, users and groups (Nuxeo Installation and Administration)

Using a LDAP directory (Nuxeo Installation and Administration)

Using Shibboleth (Nuxeo Installation and Administration)

Layouts (forms and views) (Nuxeo Enterprise Platform (EP))

Publisher service
Since Nuxeo DM 5.3GA, there are three ways to publish a document:

® on local sections, ie the sections created in your Nuxeo DM instance,
® on remote sections, ie the sections of a remote Nuxeo server,
¢ on the file system.

Publication is configured using the PublisherService.

On this page

About the PublisherService
Configuring local sections publishing
Configuring remote sections publishing
® Server configuration
® (Client configuration

¢ Configuring file system publishing

About the PublisherService
When using the PublisherService, you only need to care about three interfaces:

PublishedDocument: represents the published document. It can be created from a DocumentModel, a proxy or a
file on the file system.

PublicationNode: represents a Node where you can publish a DocumentModel. It can be another
DocumentModel (mainly Folder / Section) or a directory on the file system.

PublicationTree: the tree which is used to publish / unpublish documents, to approve / reject publication, list the
already published documents in a PublicationNode, ... See the javadoc of the PublicationTree.

The PublisherService mainly works with three concepts:

factory: the class which is used to actually create the published document. It also manages the approval /
rejection workflow on published documents.
tree: a PublicationTree instance associated to a name: for instance, we have a SectionPublicationTree

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 213

http://doc.nuxeo.com/x/GATF
http://doc.nuxeo.com/display/ADMINDOC/Using+OAuth
http://doc.nuxeo.com/pages/viewpage.action?pageId=9830808
http://doc.nuxeo.com/display/ADMINDOC/Using+CAS2+authentication
http://doc.nuxeo.com/display/ADMINDOC/Configuring+a+reverse+proxy+to+work+with+Live+Edit+and+client+certificate+authentication
http://doc.nuxeo.com/display/ADMINDOC/Authentication%2C+users+and+groups
http://doc.nuxeo.com/display/ADMINDOC/Using+a+LDAP+directory
http://doc.nuxeo.com/display/ADMINDOC/Using+Shibboleth
http://community.nuxeo.com/api/nuxeo/5.6/javadoc/index.html?org/nuxeo/ecm/platform/publisher/api/PublicationTree.html

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

which will publish in Sections, a LocalFSTree to publish on the file system, ...
tree instance: an actual publication tree where we define the factory to use, the underlying tree to use, its name
/ title, and some parameters we will see later.

Configuring local sections publishing

Publishing in local sections was the only way to publish on versions < 5.3GA. From Nuxeo DM 5.3GA, it is the
default way to publish documents.

Here is the default contribution you can find in Nuxeo publisher-jbpm-contrib.xml in nuxeo-platform-pu
blisher-jbpm. This contribution overrides the one in publisher-contrib.xml located in the nuxeo-platfor
m-publisher-core project:

<extension
target="org.nuxeo.ecm.platform.publisher.impl.service.PublisherServiceImpl"
point="treeInstance">

<publicationTreeConfig name="DefaultSectionsTree" tree="RootSectionsCoreTree"
factory="CoreProxyWithWorkflow" localSectionTree="true"
title="label.publication.tree.local.sections">
<parameters>
<!-- <parameter name="RootPath">/default-domain/sections</parameter> -->
<parameter name="RelativeRootPath">/sections</parameter>
<parameter name="enableSnapshot">true</parameter>
<parameter name="iconExpanded">/icons/folder_open.gif</parameter>
<parameter name="iconCollapsed">/icons/folder.gif</parameter>
</parameters>
</publicationTreeConfig>

</extension>

In this contribution, we define an instance using the RootSectionsCoreTree tree and the CoreProxyWithWork
flow factory. We give it a name, a title and configure it to be a localSectionTree (which means we will publish
the documents in the Sections of the Nuxeo application the documents are created in).

The available parameters are:

® RootPath: it's used when you want to define the root publication node of your PublicationTree. You
can't use both RootPath AND RelativeRoothPath parameters.

® RelativeRootPath: used when you just want to define a relative path (without specifying the domain path).
A PublicationTree instance will be created automatically for each domain, appending the RelativeRoo
tPath value to each domain.
For instance, let's assume we have two domains, domain-1 and domain-2, and the RelativeRootPath is
set to "/sections".
Then, two PublicationTree instances will be created: the first one with a RootPath set to
"/domain-1/sections", and the second one with a RootPath set to "/domain-2/sections",
In the Ul, when publishing, you can chose the PublicationTree you want. The list of trees will
automatically be updated when creating and deleting domains.

® iconExpanded and iconCollapsed: specify which icons to use when displaying the PublicationTree
on the user interface.

Copyright © 2010-2013 Nuxeo.
This documentation is published under Creative Common BY-SA license. More details on the Nuxeo Documentation License page. 214

http://doc.nuxeo.com/x/GATF

nuUXeo Nuxeo Platform 5.7.1 Technical Documentation (Fast Track version)

Configuring remote sections publishing

To make the remote publication work, both the Nuxeo server instance and Nuxeo client instance need to be
configured.

Server configuration

You should create a new configuration file, publisher-server-config.xml for instance, in the nuxeo.ear/co
nfig folder of your Nuxeo acting as a server (ie the Nuxeo application on which the documents will be published).

Here is a sample configuration:

<?xml version="1.0"?>
<component name="org.nuxeo.ecm.platform.publisher.contrib.server">

<extension
target="org.nuxeo.ecm.platform.publisher.impl.service.PublisherServiceImpl"
point="treeInstance">

<publicationTreeConfig name="ServerRemoteTree" tree="CoreTreeWithExternalDocs"
factory="RemoteDocModel" >
<parameters>
<parameter name="RootPath">/default-domain/sections</parameter>
</parameters>
</publicationTreeConfig>

</extension>

</component>

The available parameters are:

® RootPath: its value must be the path to the document which is the root of your PublicationTree. Here, it
will be the document /default-domain/sections, the default Sections root in Nuxeo.
This parameter can be modified to suit your needs